scholarly journals Synergistic Image and Feature Adaptation: Towards Cross-Modality Domain Adaptation for Medical Image Segmentation

Author(s):  
Cheng Chen ◽  
Qi Dou ◽  
Hao Chen ◽  
Jing Qin ◽  
Pheng-Ann Heng

This paper presents a novel unsupervised domain adaptation framework, called Synergistic Image and Feature Adaptation (SIFA), to effectively tackle the problem of domain shift. Domain adaptation has become an important and hot topic in recent studies on deep learning, aiming to recover performance degradation when applying the neural networks to new testing domains. Our proposed SIFA is an elegant learning diagram which presents synergistic fusion of adaptations from both image and feature perspectives. In particular, we simultaneously transform the appearance of images across domains and enhance domain-invariance of the extracted features towards the segmentation task. The feature encoder layers are shared by both perspectives to grasp their mutual benefits during the end-to-end learning procedure. Without using any annotation from the target domain, the learning of our unified model is guided by adversarial losses, with multiple discriminators employed from various aspects. We have extensively validated our method with a challenging application of crossmodality medical image segmentation of cardiac structures. Experimental results demonstrate that our SIFA model recovers the degraded performance from 17.2% to 73.0%, and outperforms the state-of-the-art methods by a significant margin.

2021 ◽  
Vol 1 (1) ◽  
pp. 50-52
Author(s):  
Bo Dong ◽  
Wenhai Wang ◽  
Jinpeng Li

We present our solutions to the MedAI for all three tasks: polyp segmentation task, instrument segmentation task, and transparency task. We use the same framework to process the two segmentation tasks of polyps and instruments. The key improvement over last year is new state-of-the-art vision architectures, especially transformers which significantly outperform ConvNets for the medical image segmentation tasks. Our solution consists of multiple segmentation models, and each model uses a transformer as the backbone network. we get the best IoU score of 0.915 on the instrument segmentation task and 0.836 on polyp segmentation task after submitting. Meanwhile, we provide complete solutions in https://github.com/dongbo811/MedAI-2021.


Author(s):  
Danbing Zou ◽  
Qikui Zhu ◽  
Pingkun Yan

Domain adaptation aims to alleviate the problem of retraining a pre-trained model when applying it to a different domain, which requires large amount of additional training data of the target domain. Such an objective is usually achieved by establishing connections between the source domain labels and target domain data. However, this imbalanced source-to-target one way pass may not eliminate the domain gap, which limits the performance of the pre-trained model. In this paper, we propose an innovative Dual-Scheme Fusion Network (DSFN) for unsupervised domain adaptation. By building both source-to-target and target-to-source connections, this balanced joint information flow helps reduce the domain gap to further improve the network performance. The mechanism is further applied to the inference stage, where both the original input target image and the generated source images are segmented with the proposed joint network. The results are fused to obtain more robust segmentation. Extensive experiments of unsupervised cross-modality medical image segmentation are conducted on two tasks -- brain tumor segmentation and cardiac structures segmentation. The experimental results show that our method achieved significant performance improvement over other state-of-the-art domain adaptation methods.


2021 ◽  
pp. 201-210
Author(s):  
Guodong Zeng ◽  
Till D. Lerch ◽  
Florian Schmaranzer ◽  
Guoyan Zheng ◽  
Jürgen Burger ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 35
Author(s):  
Boris Shirokikh ◽  
Alexey Shevtsov ◽  
Alexandra Dalechina ◽  
Egor Krivov ◽  
Valery Kostjuchenko ◽  
...  

The prevailing approach for three-dimensional (3D) medical image segmentation is to use convolutional networks. Recently, deep learning methods have achieved human-level performance in several important applied problems, such as volumetry for lung-cancer diagnosis or delineation for radiation therapy planning. However, state-of-the-art architectures, such as U-Net and DeepMedic, are computationally heavy and require workstations accelerated with graphics processing units for fast inference. However, scarce research has been conducted concerning enabling fast central processing unit computations for such networks. Our paper fills this gap. We propose a new segmentation method with a human-like technique to segment a 3D study. First, we analyze the image at a small scale to identify areas of interest and then process only relevant feature-map patches. Our method not only reduces the inference time from 10 min to 15 s but also preserves state-of-the-art segmentation quality, as we illustrate in the set of experiments with two large datasets.


2021 ◽  
Vol 1 (1) ◽  
pp. 14-16
Author(s):  
Debapriya Banik ◽  
Kaushiki Roy ◽  
Debotosh Bhattacharjee

This paper addresses the Instrument Segmentation Task, a subtask for the “MedAI: Transparency in Medical Image Segmentation” challenge. To accomplish the subtask, our team “Med_Seg_JU” has proposed a deep learning-based framework, namely “EM-Net: An Efficient M-Net for segmentation of surgical instruments in colonoscopy frames”. The proposed framework is inspired by the M-Net architecture. In this architecture, we have incorporated the EfficientNet B3 module with U-Net as the backbone. Our proposed method obtained a JC of 0.8205, DSC of 0.8632, PRE of 0.8464, REC of 0.9005, F1 of 0.8632, and ACC of 0.9799 as evaluated by the challenge organizers on a separate test dataset. These results justify the efficacy of our proposed method in the segmentation of the surgical instruments.


Sign in / Sign up

Export Citation Format

Share Document