latent vector
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 23)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 25 (5) ◽  
pp. 1115-1130
Author(s):  
Yongquan Wan ◽  
Lihua Zhu ◽  
Cairong Yan ◽  
Bofeng Zhang

Matrix factorization (MF) models are effective and easy to expand and are widely used in industry, such as rating prediction and item recommendation. The basic MF model is relatively simple. In practical applications, side information such as attributes or implicit feedback is often combined to improve accuracy by modifying the model and optimizing the algorithm. In this paper, we propose an attribute interaction-aware matrix factorization (AIMF) method for recommendation tasks. We partition the original rating matrix into different sub-matrices according to the attribute interactions, train each sub-matrix independently, and merge all the latent vectors to generate the final score. Since the generated sub-matrices vary in size, an adaptive regularization coefficient optimization strategy and an adaptive latent vector dimension optimization strategy are proposed for sub-matrix training, and a variety of latent vector merging methods are put forward. The method AIMF has two advantages. When the original rating matrix is particularly large, the training time complexity of the MF-based model becomes higher and the update cost of the model is also higher. In AIMF, because each sub-matrix is usually much smaller than the original rating matrix, the training time complexity is greatly reduced after using parallel computing technology. Secondly, in AIMF, it is not necessary to modify the matrix factorization model to incorporate attributes and their interactive information into the model to improve the performance. The experimental results on the two classic public datasets MovieLens 1M and MovieLens 100k show that AIMF can not only effectively improve the accuracy of recommendation, but also make full use of parallel computing technology to improve training efficiency without modifying the matrix factorization model.


2021 ◽  
Vol 926 ◽  
Author(s):  
Kai Fukami ◽  
Takaaki Murata ◽  
Kai Zhang ◽  
Koji Fukagata

We perform a sparse identification of nonlinear dynamics (SINDy) for low-dimensionalized complex flow phenomena. We first apply the SINDy with two regression methods, the thresholded least square algorithm and the adaptive least absolute shrinkage and selection operator which show reasonable ability with a wide range of sparsity constant in our preliminary tests, to a two-dimensional single cylinder wake at $Re_D=100$ , its transient process and a wake of two-parallel cylinders, as examples of high-dimensional fluid data. To handle these high-dimensional data with SINDy whose library matrix is suitable for low-dimensional variable combinations, a convolutional neural network-based autoencoder (CNN-AE) is utilized. The CNN-AE is employed to map a high-dimensional dynamics into a low-dimensional latent space. The SINDy then seeks a governing equation of the mapped low-dimensional latent vector. Temporal evolution of high-dimensional dynamics can be provided by combining the predicted latent vector by SINDy with the CNN decoder which can remap the low-dimensional latent vector to the original dimension. The SINDy can provide a stable solution as the governing equation of the latent dynamics and the CNN-SINDy-based modelling can reproduce high-dimensional flow fields successfully, although more terms are required to represent the transient flow and the two-parallel cylinder wake than the periodic shedding. A nine-equation turbulent shear flow model is finally considered to examine the applicability of SINDy to turbulence, although without using CNN-AE. The present results suggest that the proposed scheme with an appropriate parameter choice enables us to analyse high-dimensional nonlinear dynamics with interpretable low-dimensional manifolds.


Author(s):  
Zhizhong Huang ◽  
Shouzhen Chen ◽  
Junping Zhang ◽  
Hongming Shan

Age progression and regression aim to synthesize photorealistic appearance of a given face image with aging and rejuvenation effects, respectively. Existing generative adversarial networks (GANs) based methods suffer from the following three major issues: 1) unstable training introducing strong ghost artifacts in the generated faces, 2) unpaired training leading to unexpected changes in facial attributes such as genders and races, and 3) non-bijective age mappings increasing the uncertainty in the face transformation. To overcome these issues, this paper proposes a novel framework, termed AgeFlow, to integrate the advantages of both flow-based models and GANs. The proposed AgeFlow contains three parts: an encoder that maps a given face to a latent space through an invertible neural network, a novel invertible conditional translation module (ICTM) that translates the source latent vector to target one, and a decoder that reconstructs the generated face from the target latent vector using the same encoder network; all parts are invertible achieving bijective age mappings. The novelties of ICTM are two-fold. First, we propose an attribute-aware knowledge distillation to learn the manipulation direction of age progression while keeping other unrelated attributes unchanged, alleviating unexpected changes in facial attributes. Second, we propose to use GANs in the latent space to ensure the learned latent vector indistinguishable from the real ones, which is much easier than traditional use of GANs in the image domain. Experimental results demonstrate superior performance over existing GANs-based methods on two benchmarked datasets. The source code is available at https://github.com/Hzzone/AgeFlow.


2021 ◽  
Author(s):  
Nicky Bayat ◽  
Vahid Reza Khazaie ◽  
Andrew Keyes ◽  
Yalda Mohsenzadeh
Keyword(s):  

2021 ◽  
Vol 12 (2) ◽  
pp. 1-20
Author(s):  
Zeyu Cui ◽  
Feng Yu ◽  
Shu Wu ◽  
Qiang Liu ◽  
Liang Wang

Item representations in recommendation systems are expected to reveal the properties of items. Collaborative recommender methods usually represent an item as one single latent vector. Nowadays the e-commercial platforms provide various kinds of attribute information for items (e.g., category, price, and style of clothing). Utilizing this attribute information for better item representations is popular in recent years. Some studies use the given attribute information as side information, which is concatenated with the item latent vector to augment representations. However, the mixed item representations fail to fully exploit the rich attribute information or provide explanation in recommender systems. To this end, we propose a fine-grained Disentangled Item Representation (DIR) for recommender systems in this article, where the items are represented as several separated attribute vectors instead of a single latent vector. In this way, the items are represented at the attribute level, which can provide fine-grained information of items in recommendation. We introduce a learning strategy, LearnDIR, which can allocate the corresponding attribute vectors to items. We show how DIR can be applied to two typical models, Matrix Factorization (MF) and Recurrent Neural Network (RNN). Experimental results on two real-world datasets show that the models developed under the framework of DIR are effective and efficient. Even using fewer parameters, the proposed model can outperform the state-of-the-art methods, especially in the cold-start situation. In addition, we make visualizations to show that our proposition can provide explanation for users in real-world applications.


2021 ◽  
pp. 515-529
Author(s):  
Chunkai Zhang ◽  
Wei Zuo ◽  
Shaocong Li ◽  
Xuan Wang ◽  
Peiyi Han ◽  
...  

Author(s):  
Michael Greminger

Abstract Topology optimization is a powerful tool to generate mechanical designs that use minimal mass to achieve their function. However, the designs obtained using topology optimization are often not manufacturable using a given manufacturing process. There exist some modifications to the traditional topology optimization algorithm that are able to impose manufacturing constraints for a limited set of manufacturing methods. These approaches have the drawback that they are often based on heuristics to obtain the manufacturability constraint and thus cannot be applied generally to multiple manufacturing methods. In order to create a general approach to imposing manufacturing constraints on topology optimization, generative adversarial networks (GANs) are used. GANs have the capability to produce samples from a distribution defined by training data. In this work, the GAN is trained by generating synthetic 3D voxel training data that represent the distribution of designs that can be created by a particular manufacturing method. Once trained, the GAN forms a mapping from a latent vector space to the space of manufacturable designs. The topology optimization is then performed on the latent vector space ensuring that the design obtained is manufacturable. The effectiveness of this approach is demonstrated by training a GAN on designs intended to be manufacturable on a 3-axis computer numerically controlled (CNC) milling machine.


Sign in / Sign up

Export Citation Format

Share Document