On a homoclinic manifold of a coupled long-wave–short-wave system

2010 ◽  
Vol 15 (8) ◽  
pp. 2066-2072 ◽  
Author(s):  
O.C. Wright
Keyword(s):  
2021 ◽  
Author(s):  
Kuai Bi ◽  
Hui-Qin Hao ◽  
Jian-Wen Zhang ◽  
Rui Guo

Abstract In this paper, we will obtain the exact $N$-soliton solution of the coupled long-wave-short-wave system via the developed Hirota bilinear method. Through manipulating the relevant parameters, we will construct different types of solutions which include breather-like solutions and dark-soliton-breather-like solutions. Moreover, we will demonstrate that the interactions of two-soliton and two-breather-like solutions are all elastic through asymptotic analysis method. Finally, we will display the interactions through illustrations.PACS 05.45.Yv; 02.30.Ik; 42.81.Dp


2014 ◽  
Vol 90 (4) ◽  
Author(s):  
T. Kanna ◽  
M. Vijayajayanthi ◽  
M. Lakshmanan
Keyword(s):  

2018 ◽  
Vol 3 (12) ◽  
Author(s):  
H. N. Chan ◽  
R. H. J. Grimshaw ◽  
K. W. Chow

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Britta Jänicke ◽  
Fred Meier ◽  
Marie-Therese Hoelscher ◽  
Dieter Scherer

The evaluation of the effectiveness of countermeasures for a reduction of urban heat stress, such as façade greening, is challenging due to lacking transferability of results from one location to another. Furthermore, complex variables such as the mean radiant temperature(Tmrt)are necessary to assess outdoor human bioclimate. We observedTmrtin front of a building façade in Berlin, Germany, which is half-greened while the other part is bare.Tmrtwas reduced (mean 2 K) in front of the greened compared to the bare façade. To overcome observational shortcomings, we applied the microscale models ENVI-met, RayMan, and SOLWEIG. We evaluated these models based on observations. Our results show thatTmrt(MD = −1.93 K) and downward short-wave radiation (MD = 14.39 W/m2) were sufficiently simulated in contrast to upward short-wave and long-wave radiation. Finally, we compare the simulated reduction ofTmrtwith the observed one in front of the façade greening, showing that the models were not able to simulate the effects of façade greening with the applied settings. Our results reveal that façade greening contributes only slightly to a reduction of heat stress in front of building façades.


The method of multiple scales is used to examine the slow modulation of a harmonic wave moving over the surface of a two dimensional channel. The flow is assumed inviscid and incompressible, but the basic flow takes the form of an arbitrary shear. The appropriate nonlinear Schrödinger equation is derived with coefficients that depend, in a complicated way, on the shear. It is shown that this equation agrees with previous work for the case of no shear; it also agrees in the long wave limit with the appropriate short wave limit of the Korteweg-de Vries equation, the shear being arbitrary. Finally, it is remarked that the stability of Stokes waves over any shear can be examined by using the results derived here.


Sign in / Sign up

Export Citation Format

Share Document