scholarly journals Evaluating the Effects of Façade Greening on Human Bioclimate in a Complex Urban Environment

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Britta Jänicke ◽  
Fred Meier ◽  
Marie-Therese Hoelscher ◽  
Dieter Scherer

The evaluation of the effectiveness of countermeasures for a reduction of urban heat stress, such as façade greening, is challenging due to lacking transferability of results from one location to another. Furthermore, complex variables such as the mean radiant temperature(Tmrt)are necessary to assess outdoor human bioclimate. We observedTmrtin front of a building façade in Berlin, Germany, which is half-greened while the other part is bare.Tmrtwas reduced (mean 2 K) in front of the greened compared to the bare façade. To overcome observational shortcomings, we applied the microscale models ENVI-met, RayMan, and SOLWEIG. We evaluated these models based on observations. Our results show thatTmrt(MD = −1.93 K) and downward short-wave radiation (MD = 14.39 W/m2) were sufficiently simulated in contrast to upward short-wave and long-wave radiation. Finally, we compare the simulated reduction ofTmrtwith the observed one in front of the façade greening, showing that the models were not able to simulate the effects of façade greening with the applied settings. Our results reveal that façade greening contributes only slightly to a reduction of heat stress in front of building façades.

This research investigates the impact of rooftop vegetation on the phenomenon of urban heat island (UHI) in hot-aired microclimates with an emphasis on housing projects in the context of Baghdad city. The methodology of this research relies on ENVI-met Headquarter 4.4.5 to create models that simulate and comparatively analyze the effect of rooftop vegetation on reduction UHI within housing projects. The analysis encompassed models of low-rise, mid-rise, and high-rise buildings. The simulated climatic parameters included the Predicted Mean Vote (PMV), air temperature, mean radiant temperature (MRT), reflected short-wave radiation, and humidity. The findings of this research indicated that rooftop vegetation can participate in the reduction of UHI phenomenon in housing projects, the most significant for almost all climatic parameters results were in low-rise and mid-rise buildings as compared to high-rise buildings.


2021 ◽  
Author(s):  
Georges Djoumna ◽  
Sebastian H. Mernild ◽  
David Holland

<p>The surface radiation budget is an essential component of the total energy exchange between the atmosphere and the Earth’s surface. Measurements of radiative fluxes near/on ice surfaces are sparse in the polar regions, including on the Greenland Ice Sheet (GrIS), and the effects of cloud on radiative fluxes are still poorly studied. In this work, we assess the impacts of cloud on radiative fluxes using two metrics: the longwave-equivalent cloudiness, derived from long-wave radiation measurements, and the cloud transmittance factor, obtained from short-wave radiation. The metrics are applied to radiation data from two automatic weather stations located over the bare ground near the ice front of Helheim (HG) and Jakobshavn Isbræ (JI) on the GrIS. Comparisons of meteorological parameters, surface radiation fluxes, and cloud metrics show significant differences between the two sites. The cloud transmittance factor is higher at HG than at JI, and the incoming short-wave radiation in the summer at HG is 50.0 W m−2 larger than at JI. Cloud metrics derived at the two sites reveal   a high dependency on the wind direction. The total cloud radiative effect (CREnet) generally increases during melt season at the two stations due to long-wave CRE enhancement by cloud fraction.  CREnet decreases from May to June and increases afterward, due to the strengthened short-wave CRE. The annually averaged CREnet were 3.0 ± 7.4 W m-2 and 1.9 ± 15.1 W m−2 at JI and HG.  CREnet estimated from AWS indicates that clouds cool the JI and HG during melt season at different rates.</p>


2019 ◽  
Vol 10 (1) ◽  
pp. 283
Author(s):  
Yongzong Lu ◽  
Yongguang Hu ◽  
Pingping Li ◽  
Kyaw Tha Paw U ◽  
Richard L. Snyder

Radiation frost happens frequently in the Yangtze River Delta region, which causes high economic loss in agriculture industry. It occurs because of heat losses from the atmosphere, plant and soil in the form of radiant energy, which is strongly associated with the micrometeorological characteristics. Multidimensional and nonlinear micrometeorological data enhances the difficulty in predicting the radiation frost. Support vector machines (SVMs), a type of algorithms, can be supervised learning which widely be employed for classification or regression problems in research of precision agriculture. This paper is the first attempt of using SVMs to build prediction models for radiation frost. Thirty-two kinds of micrometeorological parameters, such as daily mean temperature at six heights (Tmean0.5, Tmean1.5, Tmean2.0, Tmean3.0, Tmean4.5 and Tmean6.0), daily maximum and minimum temperatures at six heights (Tmax0.5, Tmax1.5, Tmax2.0, Tmax3.0, Tmax4.5 and Tmax6.0, and Tmin0.5, Tmin1.5, Tmin2.0, Tmin3.0, Tmin4.5 and Tmin6.0), daily mean relative humidity at six heights (RH0.5, RH1.5, RH2.0, RH3.0, RH4.5 and RH6.0), net radiation (Rn), downward short-wave radiation (Rsd), downward long-wave radiation (Rld), upward long-wave radiation (Rlu), upward short-wave radiation (Rsu), soil temperature (Tsoil) and soil heat flux (G) and daily average wind speed (u) were collected from November 2016 to July 2018. Six combinations inputs were used as the basis dataset for testing and training. Three types of kernel functions, such as linear kernel, radial basis function kernel and polynomial kernel function were used to develop the SVMs models. Five-fold cross validation was conducted for model fitting on training dataset to alleviate over-fitting and make prediction results more reliable. The results showed that an SVM with the radial basis function kernel (SVM-BRF) model with all the 32 micrometeorological data obtained high prediction accuracy in training and testing sets. When the single type of data (temperature, humidity and radiation data) was used for the SVM without any functions, prediction accuracy was better than that with functions. The SVM-BRF model had the best prediction accuracy when using the multidimensional and nonlinear micrometeorological data. Considering the complexity level of the model and the accuracy of prediction, micrometeorological data at the canopy height with the SVM-BRF model has been recommended for radiation frost prediction in Yangtze River Delta and probably could be applied in elsewhere with the similar terrains and micro-climates.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Noémi Kántor ◽  
János Unger

AbstractThis paper gives a review on the topic of the mean radiant temperature Tmrt, the most important parameter influencing outdoor thermal comfort during sunny conditions. Tmrt summarizes all short wave and long wave radiation fluxes reaching the human body, which can be very complex (variable in spatial and also in temporal manner) in urban settings. Thermal comfort researchers and urban planners need easy and sound methodological approaches to assess Tmrt. After the basics of the Tmrt calculation some of the methods suitable for obtaining Tmrt also in urban environments will be presented.. Two of the discussed methods are based on instruments which measure the radiation fluxes integral (globe thermometer, pyranometer-pyrgeometer combination), and three of the methods are based on modelling the radiation environment with PC software (RayMan, ENVI-met and SOLWEIG).


1966 ◽  
Vol 6 (44) ◽  
pp. 267-287 ◽  
Author(s):  
C. M. Platt

AbstractMeteorological observations were made on Lewis Glacier, Mount Kenya, during the “long rains” in April 1960. General meteorological observations indicated rather similar conditions to those found in other months. Ablation occurred on each day but amounts were generally small. Rather more accumulation occurred than is expected during the dry season, but again amounts were small. The net accumulation over a to day period was only 0.38 cm. water-equivalent, although about 30 cm. new snow (about 10 cm. water-equivalent) was lying when the expedition arrived. Detailed observations of short-wave radiation, temperature, wind and humidity with estimates of long-wave radiation were used to calculate the heat balance at the surface of the upper ablation region. Agreement between calculated and measured ablation was reasonably good. Over the periods considered, radiation accounted for 89.5 per cent of ablation, turbulent exchange from the air for 8.0 per cent and evaporation for 2.5 per cent. Subsurface melting was taken into account and the formation of ice bands in terms of such melting is discussed.


1980 ◽  
Vol 25 (93) ◽  
pp. 439-444 ◽  
Author(s):  
Stefan Hastenrath ◽  
J. K. Patnaik

AbstractShort- and long-wave radiation on variously oriented vertical surfaces, direct solar radiation, global radiation, and long–wave radiation on a horizontal surface were measured on Lewis Glacier, Mount Kenya, at 4800 m. For the orientation of vertical surfaces, the following azimuths were selected: 45°, facing the steep slope of the upper glacier; 135°, facing a rock ridge and some glacier surface in the foreground; 225°, facing down–glacier towards the Teleki valley with open sky occupying much of the view; and 315°, directed towards the steep south-east face of the Nelion peak.The horizontal components of diffuse short-wave radiation reach a magnitude comparable to those of direct radiation. As a result of contrastingly different albedos of natural surfaces, the horizontal component of diffuse short–wave radiation is particularly large from the direction of the upper glacier, with values around 330–500 W m−2, and smallest from the direction of the rock face of Nelion peak, where values are around 150–330 W m−2. Long–wave radiation seems enhanced from the direction of the Nelion face, and reduced from the azimuth of the upper glacier, thus apparently reflecting differences in emissivity and temperature.


2021 ◽  
Vol 8 ◽  
Author(s):  
G. Djoumna ◽  
S. H. Mernild ◽  
D. M. Holland

The surface radiation budget is an essential component of the total energy exchange between the atmosphere and the Earth’s surface. Measurements of radiative fluxes near/on ice surfaces are sparse in the polar regions, including on the Greenland Ice Sheet (GrIS), and the effects of cloud on radiative fluxes are still poorly studied. In this work, we assess the impacts of cloud on radiative fluxes using two metrics: the longwave-equivalent cloudiness, derived from long-wave radiation measurements, and the cloud transmittance factor, obtained from short-wave radiation data. The metrics are applied to radiation data from two automatic weather stations located over the bare ground near the ice front of Helheim (HG, 66.3290°N, 38.1460°W) and Jakobshavn Isbræ(JI, 69.2220°N, 49.8150°W) on the GrIS. Comparisons of meteorological parameters, surface radiation fluxes, and cloud metrics show significant differences between the two sites. The cloud transmittance factor is higher at HG than at JI, and the incoming short-wave radiation in the summer at HG is about 50.0 W m−2 larger than at JI. Cloud metrics derived at the two sites reveal partly cloudy conditions were frequent (42 and 65% of the period at HG and JI) with a high dependency on the wind direction. The total cloud radiative effect (CREnet) generally increases during melt season at the two stations due to long-wave CRE enhancement by cloud fraction. CREnet decreases from May to June and increases afterward, due to the strengthened short-wave CRE. The annually averaged CREnet were 3.0 ± 7.4 W m−2 and 1.9±15.1 W m−2 at JI and HG. CREnet estimated from AWS indicates that clouds cool the JI and HG during melt season at different rates.


1987 ◽  
Vol 33 (114) ◽  
pp. 162-168 ◽  
Author(s):  
M.C. Serreze ◽  
R.S. Bradley

AbstractHourly measurements of incoming short-wave and long-wave radiation, surface albedo, and net radiation were made on and around a plateau ice cap on north-eastern Ellesmere Island during the summers of 1982 and 1983. These data were stratified by cloud type and amount. All cloud types increased incoming long-wave radiation, especially low dense clouds, fog, and clouds associated with snowfall. Relative transmission of incoming short-wave radiation, expressed as a percentage of clear-sky radiation receipts, was high for all cloud types compared to clouds at lower latitudes. With high surface albedo (≥0.75), net radiation was strongly and positively correlated with net long-wave radiation but showed little relationship to net short-wave radiation. By contrast, with low surface albedo (≤0.20) net radiation was negatively correlated with net long-wave radiation but positively correlated with net short-wave radiation. Under high-albedo conditions, an increase in cloudiness led to higher values of net radiation but under low-albedo conditions net radiation decreased as cloud cover increased. Survival of a snow cover would seem to be favoured if the seasonal decline in albedo is accompanied by a corresponding increase in cloudiness.


1972 ◽  
Vol 50 (8) ◽  
pp. 1731-1740 ◽  
Author(s):  
J. T. A. Proctor ◽  
W. J. Kyle ◽  
J. A. Davies

Measurements of radiation balance components over an apple tree on 7 days during the growing season showed that 17% of the short-wave radiation was reflected, 17% was lost as long-wave radiation and net radiation amounted to 66%. The reflection coefficient exhibited a characteristic diurnal variation, demonstrating its dependence on solar zenith angle, and varied little over the season. Within the orchard, surfaces ranked in order of increasing reflection coefficient as tree, dry orchard grass, and intertree space.Correlation coefficients relating hourly values of net radiation to incoming short-wave radiation and net short-wave radiation, and net long-wave radiation to net short-wave radiation were highly significant. The heating coefficient was positive and decreased slightly at the end of the season. The long-wave exchange coefficient was negative and exhibited no seasonal trend. This coefficient was closely correlated with screen temperature and may provide a basis for interpretation of surface radiative processes.


Sign in / Sign up

Export Citation Format

Share Document