The finite-dimensional super integrable system of a super NLS-mKdV equation

2012 ◽  
Vol 17 (11) ◽  
pp. 4044-4052 ◽  
Author(s):  
Qiu-Lan Zhao ◽  
Yu-Xia Li ◽  
Xin-Yue Li ◽  
Ye-Peng Sun



2015 ◽  
Vol 70 (11) ◽  
pp. 913-917
Author(s):  
Wei Liu ◽  
Yafeng Liu ◽  
Shujuan Yuan

AbstractIn this article, the Bargmann system related to the spectral problem (∂2+q∂+∂q+r)φ=λφ+λφx is discussed. By the Euler–Lagrange equations and the Legendre transformations, a suitable Jacobi–Ostrogradsky coordinate system is obtained. So the Lax pairs of the aforementioned spectral problem are nonlinearised. A new kind of finite-dimensional Hamilton system is generated. Moreover, the involutive solutions of the evolution equations for the infinite-dimensional soliton system are derived.









2010 ◽  
Vol 25 (30) ◽  
pp. 5567-5594 ◽  
Author(s):  
MARCOS A. G. GARCÍA ◽  
ALEXANDER V. TURBINER

The quantum H3 integrable system is a three-dimensional system with rational potential related to the noncrystallographic root system H3. It is shown that the gauge-rotated H3 Hamiltonian as well as one of the integrals, when written in terms of the invariants of the Coxeter group H3, is in algebraic form: it has polynomial coefficients in front of derivatives. The Hamiltonian has infinitely-many finite-dimensional invariant subspaces in polynomials, they form the infinite flag with the characteristic vector [Formula: see text]. One among possible integrals is found (of the second order) as well as its algebraic form. A hidden algebra of the H3 Hamiltonian is determined. It is an infinite-dimensional, finitely-generated algebra of differential operators possessing finite-dimensional representations characterized by a generalized Gauss decomposition property. A quasi-exactly-solvable integrable generalization of the model is obtained. A discrete integrable model on the uniform lattice in a space of H3-invariants "polynomially"-isospectral to the quantum H3 model is defined.





Sign in / Sign up

Export Citation Format

Share Document