scholarly journals Power-law cross-correlations estimation under heavy tails

Author(s):  
Ladislav Kristoufek
2010 ◽  
Vol 20 (10) ◽  
pp. 3323-3328 ◽  
Author(s):  
PENGJIAN SHANG ◽  
KEQIANG DONG ◽  
SANTI KAMAE

The study of diverse natural and nonstationary signals has recently become an area of active research for physicists. This is because these signals exhibit interesting dynamical properties such as scale invariance, volatility correlation, heavy tails and fractality. The focus of the present paper is on the intriguing power-law autocorrelations and cross-correlations in traffic series. Detrended Cross-Correlation Analysis (DCCA) is used to study the traffic flow fluctuations. It is demonstrated that the time series, observed on the Anhua-Bridge highway in the Beijing Third Ring Road (BTRR), may exhibit power-law cross-correlations when they come from two adjacent sections or lanes. This indicates that a large increment in one traffic variable is more likely to be followed by large increment in the other traffic variable. However, for traffic time series derived from nonadjacent sections or lanes, we find that even though they are power-law autocorrelated, there is no cross-correlation between them with a unique exponent. Our results show that DCCA techniques based on Detrended Fluctuation Analysis (DFA) can be used to analyze and interpret the traffic flow.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 352
Author(s):  
Janusz Miśkiewicz

Within the paper, the problem of globalisation during financial crises is analysed. The research is based on the Forex exchange rates. In the analysis, the power law classification scheme (PLCS) is used. The study shows that during crises cross-correlations increase resulting in significant growth of cliques, and also the ranks of nodes on the converging time series network are growing. This suggests that the crises expose the globalisation processes, which can be verified by the proposed analysis.


2020 ◽  
Vol 65 (1-2) ◽  
pp. 27-34
Author(s):  
Sz. Kelemen ◽  
◽  
L. Varga ◽  
Z. Néda ◽  
◽  
...  

"The two-body cross-correlation for the diffusive motion of colloidal nano-spheres is experimentally investigated. Polystyrene nano-spheres were used in a very low concentration suspension in order to minimize the three- or more body collective effects. Beside the generally used longitudinal and transverse component correlations we investigate also the Pearson correlation in the magnitude of the displacements. In agreement with previous studies we find that the longitudinal and transverse component correlations decay as a function of the inter-particle distance following a power-law trend with an exponent around -2. The Pearson correlation in the magnitude of the displacements decay also as a power-law with an exponent around -1. Keywords: colloidal particles, Brownian motion, cross-correlation. "


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Keqiang Dong ◽  
Hong Zhang ◽  
You Gao

The understanding of complex systems has become an area of active research for physicists because such systems exhibit interesting dynamical properties such as scale invariance, volatility correlation, heavy tails, and fractality. We here focus on traffic dynamic as an example of a complex system. By applying the detrended cross-correlation coefficient method to traffic time series, we find that the traffic fluctuation time series may exhibit cross-correlation characteristic. Further, we show that two traffic speed time series derived from adjacent sections exhibit much stronger cross-correlations than the two speed series derived from adjacent lanes. Similarly, we also demonstrate that the cross-correlation property between the traffic volume variables from two adjacent sections is stronger than the cross-correlation property between the volume variables of adjacent lanes.


2007 ◽  
Vol 56 (1) ◽  
pp. 47-52 ◽  
Author(s):  
B. Podobnik ◽  
D. F. Fu ◽  
H. E. Stanley ◽  
P. Ch. Ivanov

2015 ◽  
Vol 19 (2) ◽  
pp. 729-745 ◽  
Author(s):  
A. Guadagnini ◽  
S. P. Neuman ◽  
T. Nan ◽  
M. Riva ◽  
C. L. Winter

Abstract. We analyze scale-dependent statistics of correlated random hydrogeological variables and their extremes using neutron porosity data from six deep boreholes, in three diverse depositional environments, as example. We show that key statistics of porosity increments behave and scale in manners typical of many earth and environmental (as well as other) variables. These scaling behaviors include a tendency of increments to have symmetric, non-Gaussian frequency distributions characterized by heavy tails that decay with separation distance or lag; power-law scaling of sample structure functions (statistical moments of absolute increments) in midranges of lags; linear relationships between log structure functions of successive orders at all lags, known as extended self-similarity or ESS; and nonlinear scaling of structure function power-law exponents with function order, a phenomenon commonly attributed in the literature to multifractals. Elsewhere we proposed, explored and demonstrated a new method of geostatistical inference that captures all of these phenomena within a unified theoretical framework. The framework views data as samples from random fields constituting scale mixtures of truncated (monofractal) fractional Brownian motion (tfBm) or fractional Gaussian noise (tfGn). Important questions not addressed in previous studies concern the distribution and statistical scaling of extreme incremental values. Of special interest in hydrology (and many other areas) are statistics of absolute increments exceeding given thresholds, known as peaks over threshold or POTs. In this paper we explore the statistical scaling of data and, for the first time, corresponding POTs associated with samples from scale mixtures of tfBm or tfGn. We demonstrate that porosity data we analyze possess properties of such samples and thus follow the theory we proposed. The porosity data are of additional value in revealing a remarkable cross-over from one scaling regime to another at certain lags. The phenomena we uncover are of key importance for the analysis of fluid flow and solute as well as particulate transport in complex hydrogeologic environments.


2021 ◽  
Author(s):  
Lenin Del Rio Amador ◽  
Shaun Lovejoy

<p>Over time scales between 10 days and 10-20 years – the macroweather regime – atmospheric fields, including the temperature, respect statistical scale symmetries, such as power-law correlations, that imply the existence of a huge memory in the system that can be exploited for long-term forecasts. The Stochastic Seasonal to Interannual Prediction System (StocSIPS) is a stochastic model that exploits these symmetries to perform long-term forecasts. It models the temperature as the high-frequency limit of the (fractional) energy balance equation (fractional Gaussian noise) which governs radiative equilibrium processes when the relevant equilibrium relaxation processes are power law, rather than exponential. They are obtained when the order of the relaxation equation is fractional rather than integer and they are solved as past value problems rather than initial value problems.</p><p>Long-range weather prediction is conventionally an initial value problem that uses the current state of the atmosphere to produce ensemble forecasts. In contrast, StocSIPS predictions for long-memory processes are “past value” problems that use historical data to provide conditional forecasts. Cross-correlations can be used to define teleconnection patterns, and for identifying possible dynamical interactions, but they do not necessarily imply any causation. Using the precise notion of Granger causality, we show that for long-range stochastic temperature forecasts, the cross-correlations are only relevant at the level of the innovations – not temperatures. Extended here to the multivariate case, (m-StocSIPS) produces realistic space-time temperature simulations. Although it has no Granger causality, we are able to reproduce emergent properties including realistic teleconnection networks and El Niño events and indices.</p>


2014 ◽  
Vol 11 (10) ◽  
pp. 11637-11686
Author(s):  
A. Guadagnini ◽  
S. P. Neuman ◽  
T. Nan ◽  
M. Riva ◽  
C. L. Winter

Abstract. Spatial statistics of earth and environmental (as well as many other) data tend to vary with scale. Common manifestations of scale-dependent statistics include a tendency of increments to have symmetric, non-Gaussian frequency distributions characterized by heavy tails that decay with separation distance or lag; power-law scaling of sample structure functions (statistical moments of absolute increments) in midranges of lags; linear relationships between log structure functions of successive orders at all lags, known as extended self-similarity or ESS; and nonlinear scaling of structure function power-law exponents with function order, a phenomenon commonly attributed in the literature to multifractals. Elsewhere we proposed, explored and demonstrated a new method of geostatistical inference that captures all of these phenomena within a unified theoretical framework. The framework views data as samples from random fields constituting scale-mixtures of truncated (monofractal) fractional Brownian motion (tfBm) or fractional Gaussian noise (tfGn). Important questions not addressed in previous studies concern the distribution and statistical scaling of extreme incremental values. Of special interest in hydrology (and many other areas) are statistics of absolute increments exceeding given thresholds, known as peaks over thresholds or POTs. In this paper we explore for the first time the statistical behavior of POTs associated with samples from scale-mixtures of tfBm or tfGn. We are fortunate to have at our disposal thousands of neutron porosity values from six deep boreholes, in three diverse depositional environments, which we show possess the properties of such samples thus following the theory we proposed. The porosity data are of additional value in revealing a remarkable transition from one scaling regime to another at certain lags. The phenomena we uncover are of fundamental importance for the analysis of fluid flow and solute as well as particulate transport in complex hydrogeologic environments.


Sign in / Sign up

Export Citation Format

Share Document