scholarly journals Torsional instability and sensitivity analysis in a suspension bridge model related to the Melan equation

Author(s):  
Alessio Falocchi
2019 ◽  
Vol 26 (11-12) ◽  
pp. 1054-1067 ◽  
Author(s):  
Seyyed Hossein Hossein Lavassani ◽  
Hamed Alizadeh ◽  
Peyman Homami

Suspension bridges are structures that because of their long span and high flexibility can be prone to ambient vibrations such as ground motions. They can experience high amplitude vibrations in torsional mode during an earthquake, where a vibration control strategy seems necessary. Recently, control systems have been widely used to mitigate vibration of structures. Tuned mass damper is a passive control system. Its performance and effectiveness have been verified both theoretically and practically. In this study, a tuned mass damper system is used to mitigate the torsional vibration of a suspension bridge. The Vincent Thomas suspension bridge is selected as a case study, and its response is reduced by a tuned mass damper under ten pulse-type records from 10 major worldwide earthquakes. By using sensitivity analysis, a parametric study is carried out to optimize tuned mass damper parameters, namely, mass ratio, gyration radius, tuning frequency, and damping ratio according to the maximum reduction of the response maxima. Finally, the optimum range of each parameter that can give the best performance and provide both operational and economic justification for the implementation of the project is suggested. The numerical results indicate that the optimized tuned mass damper system can substantially reduce the maximum response and vibration time.


2013 ◽  
Vol 12 (6) ◽  
pp. 679-694 ◽  
Author(s):  
Marco Domaneschi ◽  
Maria Pina Limongelli ◽  
Luca Martinelli

2022 ◽  
Vol 164 ◽  
pp. 108231
Author(s):  
Zhiyuan Xia ◽  
Ser Tong Quek ◽  
Aiqun Li ◽  
Jianhui Li ◽  
Maojun Duan ◽  
...  

2004 ◽  
Vol 14 (03) ◽  
pp. 927-950 ◽  
Author(s):  
MÁRIO S. T. DE FREITAS ◽  
RICARDO L. VIANA ◽  
CELSO GREBOGI

We consider the dynamics of the first vibrational mode of a suspension bridge, resulting from the coupling between its roadbed (elastic beam) and the hangers, supposed to be one-sided springs which respond only to stretching. The external forcing is due to time-periodic vortices produced by impinging wind on the bridge structure. We have studied some relevant dynamical phenomena in such a system, like periodic and quasiperiodic responses, chaotic motion, and boundary crises. In the weak dissipative limit the dynamics is mainly multistable, presenting a variety of coexisting attractors, both periodic and chaotic, with a highly involved basin of attraction structure.


2012 ◽  
Vol 204-208 ◽  
pp. 2019-2027
Author(s):  
Zhi Wei Chen ◽  
You Lin Xu ◽  
Kai Yuen Wong

Many long-span suspension bridges have been built around the world, and many of them carry both of rail and road traffic. Fatigue assessment shall be performed to ensure the safety and functionality of these bridges. This paper first briefly introduces the main procedure of fatigue assessment recommended by British Standard, and then it is applied to the Tsing Ma suspension bridge in Hong Kong. Vehicle spectrum of trains and road vehicles are investigated based on the measurement data of trains and road vehicles recorded by the Structural Health Monitoring System (SHMS) installed on the bridge so that fatigue damage assessment will be more realistic and accurate. Stress influence lines corresponding to railway tracks and highway lanes are established based on a complex finite element bridge model so that an accurate vehicle-induced stress response can be estimated based on them. The fatigue-critical locations for different type of bridge components are identified in terms of the maximum stress range due to a standard train running over the bridge. Finally, the fatigue life at the fatigue-critical locations due to both trains and road vehicles are estimated, and the result indicates the bridge is in very good condition.


Sign in / Sign up

Export Citation Format

Share Document