Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front

Author(s):  
D.V. Lukyanenko ◽  
A.A. Borzunov ◽  
M.A. Shishlenin
Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2894
Author(s):  
Raul Argun ◽  
Alexandr Gorbachev ◽  
Dmitry Lukyanenko ◽  
Maxim Shishlenin

The work continues a series of articles devoted to the peculiarities of solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction–diffusion–advection-type with data on the position of the reaction front. In this paper, we place the emphasis on some problems of the numerical solving process. One of the approaches to solving inverse problems of the class under consideration is the use of methods of asymptotic analysis. These methods, under certain conditions, make it possible to construct the so-called reduced formulation of the inverse problem. Usually, a differential equation in this formulation has a lower dimension/order with respect to the differential equation, which is included in the full statement of the inverse problem. In this paper, we consider an example that leads to a reduced formulation of the problem, the solving of which is no less a time-consuming procedure in comparison with the numerical solving of the problem in the full statement. In particular, to obtain an approximate numerical solution, one has to use the methods of the numerical diagnostics of the solution’s blow-up. Thus, it is demonstrated that the possibility of constructing a reduced formulation of the inverse problem does not guarantee its more efficient solving. Moreover, the possibility of constructing a reduced formulation of the problem does not guarantee the existence of an approximate solution that is qualitatively comparable to the true one. In previous works of the authors, it was shown that an acceptable approximate solution can be obtained only for sufficiently small values of the singular parameter included in the full statement of the problem. However, the question of how to proceed if the singular parameter is not small enough remains open. The work also gives an answer to this question.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 342
Author(s):  
Dmitry Lukyanenko ◽  
Tatyana Yeleskina ◽  
Igor Prigorniy ◽  
Temur Isaev ◽  
Andrey Borzunov ◽  
...  

In this paper, approaches to the numerical recovering of the initial condition in the inverse problem for a nonlinear singularly perturbed reaction–diffusion–advection equation are considered. The feature of the formulation of the inverse problem is the use of additional information about the value of the solution of the equation at the known position of a reaction front, measured experimentally with a delay relative to the initial moment of time. In this case, for the numerical solution of the inverse problem, the gradient method of minimizing the cost functional is applied. In the case when only the position of the reaction front is known, the method of deep machine learning is applied. Numerical experiments demonstrated the possibility of solving such kinds of considered inverse problems.


Sign in / Sign up

Export Citation Format

Share Document