scholarly journals Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves

2008 ◽  
Vol 55 (3) ◽  
pp. 236-250 ◽  
Author(s):  
A. Khayyer ◽  
H. Gotoh ◽  
S.D. Shao
1974 ◽  
Vol 1 (14) ◽  
pp. 104 ◽  
Author(s):  
Norbert L. Ackerman ◽  
Ping-Ho Chen

Experiments were conducted in a vacuum tank in order to investigate the effect which entrained air has on impact loads which are produced when waves break upon a structure. In these experiments a flat plate was dropped onto a still water surface in an environment where the ambient pressure of the surrounding air could be controlled. Rings of varying height were fixed to the surface of the falling plate in order to trap different volumes of air between the falling plate and the water, Experimentally determined values were obtained of the maximum pressure pmax when the plate struck the water surface for various ring heights 6 and ambient pressures p0 in the vacuum tank. Experimental results indicate that the pressure rise or shock pressure Ps ~ (Pmax~Po) decreased with reductions in the ambient pressure and volume of entrapped air. Even when air was removed such that the absolute pressure in the tank was equal to the vapor pressure of the water, water hammer conditions, where the peak pressures depend upon the celerity of sound waves in the media, were never found to occur.


Author(s):  
Gonçalo N. P. Amador ◽  
Abel J. P. Gomes

Navier-Stokes-based methods have been used in computer graphics to simulate liquids, especially water. These physically based methods are computationally intensive, and require rendering the water surface at each step of the simulation process. The rendering of water surfaces requires knowing which 3D grid cells are crossed by the water’s surface, that is, tracking the surface across the cells is necessary. Solutions to water surface tracking and rendering problems exist in literature, but they are either too computationally intensive to be appropriate for real-time scenarios, as is the case of deformable implicit surfaces and ray-tracing, or too application-specific, as is the case of height-fields to simulate and render water mantles (e.g., lakes and oceans). This paper proposes a novel solution to water surface tracking that does not compromise the overall simulation performance. This approach differs from previous solutions in that it directly classifies and annotates the density of each 3D grid cell as either water, air, or water-air (i.e., water surface), opening the opportunity for easily reconstructing the water surface at an interactive frame rate.


2015 ◽  
Vol 126 ◽  
pp. 660-664 ◽  
Author(s):  
Xi-Peng Lv ◽  
Xing Zheng ◽  
Ni-Bo Zhang ◽  
Kang-Ning Niu

2013 ◽  
Vol 734 ◽  
pp. 198-218 ◽  
Author(s):  
N. E. Pizzo ◽  
W. Kendall Melville

AbstractThe connection between wave dissipation by breaking deep-water surface gravity waves and the resulting turbulence and mixing is crucial for an improved understanding of air–sea interaction processes. Starting with the ensemble-averaged Euler equations, governing the evolution of the mean flow, we model the forcing, associated with the breaking-induced Reynolds shear stresses, as a body force describing the bulk scale effects of a breaking deep-water surface gravity wave on the water column. From this, we derive an equation describing the generation of circulation, $\Gamma $, of the ensemble-average velocity field, due to the body force. By examining the relationship between a breaking wave and an impulsively forced fluid, we propose a functional form for the body force, allowing us to build upon the classical work on vortex ring phenomena to both quantify the circulation generated by a breaking wave and describe the vortex structure of the induced motion. Using scaling arguments, we show that $\Gamma = \alpha {(hk)}^{3/ 2} {c}^{3} / g$, where ($c, h, k$) represent a characteristic speed, height and wavenumber of the breaking wave, respectively, $g$ is the acceleration due to gravity and $\alpha $ is a constant. This then allows us to find a direct relationship between the circulation and the wave energy dissipation rate per unit crest length due to breaking, ${\epsilon }_{l} $. Finally, we compare our model and the available experimental data.


2008 ◽  
Vol 40 (9) ◽  
pp. 637-661 ◽  
Author(s):  
B Ataie-Ashtiani ◽  
G Shobeyri ◽  
L Farhadi

Sign in / Sign up

Export Citation Format

Share Document