An overlapping domain decomposition based near-far field coupling method for wave structure interaction simulations

2017 ◽  
Vol 126 ◽  
pp. 37-50 ◽  
Author(s):  
Xin Lu ◽  
Dominic Denver John Chandar ◽  
Yu Chen ◽  
Jing Lou
Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 429
Author(s):  
Gael Verao Fernandez ◽  
Vasiliki Stratigaki ◽  
Nicolas Quartier ◽  
Peter Troch

The study of the potential impact of wave energy converter (WEC) farms on the surrounding wave field at long distances from the WEC farm location (also know as “far field” effects) has been a topic of great interest in the past decade. Typically, “far-field” effects have been studied using phase average or phase resolving numerical models using a parametrization of the WEC power absorption using wave transmission coefficients. Most recent studies have focused on using coupled models between a wave-structure interaction solver and a wave-propagation model, which offer a more complex and accurate representation of the WEC hydrodynamics and PTO behaviour. The difference in the results between the two aforementioned approaches has not been studied yet, nor how different ways of modelling the PTO system can affect wave propagation in the lee of the WEC farm. The Coastal Engineering Research Group of Ghent University has developed both a parameterized model using the sponge layer technique in the mild slope wave propagation model MILDwave and a coupled model MILDwave-NEMOH (NEMOH is a boundary element method-based wave-structure interaction solver), for studying the “far-field” effects of WEC farms. The objective of the present study is to perform a comparison between both numerical approaches in terms of performance for obtaining the “far-field” effects of two WEC farms. Results are given for a series of regular wave conditions, demonstrating a better accuracy of the MILDwave-NEMOH coupled model in obtaining the wave disturbance coefficient (Kd) values around the considered WEC farms. Subsequently, the analysis is extended to study the influence of the PTO system modelling technique on the “far-field” effects by considering: (i) a linear optimal, (ii) a linear sub-optimal and (iii) a non-linear hydraulic PTO system. It is shown that modelling a linear optimal PTO system can lead to an unrealistic overestimation of the WEC motions than can heavily affect the wave height at a large distance in the lee of the WEC farm. On the contrary, modelling of a sub-optimal PTO system and of a hydraulic PTO system leads to a similar, yet reduced impact on the “far-field” effects on wave height. The comparison of the PTO systems’ modelling technique shows that when using coupled models, it is necessary to carefully model the WEC hydrodynamics and PTO behaviour as they can introduce substantial inaccuracies into the WECs’ motions and the WEC farm “far-field” effects.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
S. L. Han ◽  
Takeshi Kinoshita

The determination of an external force is a very important task for the purpose of control, monitoring, and analysis of damages on structural system. This paper studies a stochastic inverse method that can be used for determining external forces acting on a nonlinear vibrating system. For the purpose of estimation, a stochastic inverse function is formulated to link an unknown external force to an observable quantity. The external force is then estimated from measurements of dynamic responses through the formulated stochastic inverse model. The applicability of the proposed method was verified with numerical examples and laboratory tests concerning the wave-structure interaction problem. The results showed that the proposed method is reliable to estimate the external force acting on a nonlinear system.


Author(s):  
Harry B. Bingham ◽  
Allan P. Engsig-Karup

This contribution presents our recent progress on developing an efficient solution for fully nonlinear wave-structure interaction. The approach is to solve directly the three-dimensional (3D) potential flow problem. The time evolution of the wave field is captured by integrating the free-surface boundary conditions using a fourth-order Runge-Kutta scheme. A coordinate-transformation is employed to obtain a time-constant spatial computational domain which is discretized using arbitrary-order finite difference schemes on a grid with one stretching in each coordinate direction. The resultant linear system of equations is solved by the GMRES iterative method, preconditioned using a multigrid solution to the linearized, lowest-order version of the matrix. The computational effort and required memory use are shown to scale linearly with increasing problem size (total number of grid points). Preliminary examples of nonlinear wave interaction with variable bottom bathymetry and simple bottom mounted structures are given.


2018 ◽  
Vol 83 ◽  
pp. 386-412 ◽  
Author(s):  
Siming Zheng ◽  
Yongliang Zhang ◽  
Gregorio Iglesias

Sign in / Sign up

Export Citation Format

Share Document