Statistical distribution of wave-induced drift for random ocean waves in finite water depth

2018 ◽  
Vol 135 ◽  
pp. 31-38 ◽  
Author(s):  
Jinbao Song ◽  
Hailun He ◽  
Anzhou Cao
Author(s):  
Felice Arena ◽  
Alfredo Ascanelli

The interest and the studies on nonlinear waves are increased recently for their importance in the interaction with floating and fixed bodies. It is also well known that nonlinearities influence wave crest and wave trough distributions, both deviating from Rayleigh law. In this paper a theoretical crest distribution is obtained taking into account the extension of Boccotti’s Quasi Determinism theory, up to the second order for the case of three-dimensional waves, in finite water depth. To this purpose the Fedele & Arena [2005] distribution is generalized to three-dimensional waves on an arbitrary water depth. The comparison with Forristall second order model shows the theoretical confirmation of his conclusion: the crest distribution in deep water for long-crested and short crested waves are very close to each other; in shallow water the crest heights in three dimensional waves are greater than values given by long-crested model.


2014 ◽  
Vol 14 (3) ◽  
pp. 705-711 ◽  
Author(s):  
L. Fernandez ◽  
M. Onorato ◽  
J. Monbaliu ◽  
A. Toffoli

Abstract. The modulational instability of a uniform wave train to side band perturbations is one of the most plausible mechanisms for the generation of rogue waves in deep water. In a condition of finite water depth, however, the interaction with the sea floor generates a wave-induced current that subtracts energy from the wave field and consequently attenuates the instability mechanism. As a result, a plane wave remains stable under the influence of collinear side bands for relative depths kh &amp;leq; 1.36 (where k is the wavenumber of the plane wave and h is the water depth), but it can still destabilise due to oblique perturbations. Using direct numerical simulations of the Euler equations, it is here demonstrated that oblique side bands are capable of triggering modulational instability and eventually leading to the formation of rogue waves also for kh &amp;leq; 1.36. Results, nonetheless, indicate that modulational instability cannot sustain a substantial wave growth for kh < 0.8.


1994 ◽  
Vol 16 (6) ◽  
pp. 353-361 ◽  
Author(s):  
G.X. Wu ◽  
J.A. Witz ◽  
Q. Ma ◽  
D.T. Brown

2013 ◽  
Vol 1 (5) ◽  
pp. 5237-5260
Author(s):  
L. Fernandez ◽  
M. Onorato ◽  
J. Monbaliu ◽  
A. Toffoli

Abstract. The mechanism of side band perturbations to a uniform wave train is known to produce modulational instability and in deep water conditions it is accepted as a plausible cause for rogue wave formation. In a condition of finite water depth, however, the interaction with the sea floor generates a wave-induced current that subtracts energy from the wave field and consequently attenuates this instability mechanism. As a result, a plane wave remains stable under the influence of collinear side bands for relative water depths kh &amp;leq; 1.36 (where k represents the wavenumber of the plane wave and h the water depth), but it can still destabilise due to oblique perturbations. Using direct numerical simulations of the Euler equations, it is here demonstrated that oblique side bands are capable of triggering modulational instability and eventually leading to the formation of rogue waves also for kh &amp;leq; 1.36. Results, nonetheless, indicates that modulational instability cannot sustain a substantial wave growth for kh < 0.8.


Sign in / Sign up

Export Citation Format

Share Document