Distractor context manipulation in visual search: How expectations modulate proactive control

Cognition ◽  
2020 ◽  
Vol 196 ◽  
pp. 104129
Author(s):  
Marco A. Petilli ◽  
Francesco Marini ◽  
Roberta Daini
Author(s):  
Wendy A. Rogers ◽  
Mark D. Lee ◽  
Arthur D. Fisk

Context has an important influence on performance in a variety of tasks. In the present experiment, the context of interest was the number of consecutive trials under identical search conditions. We were interested in how individuals learn to benefit from one form of contextual cues, the time course of such benefit, and the effects of contextual manipulations on general learning, feature learning, and automatic process development. We investigated these issues using a visual search task in which we could manipulate both consistency and learning context. The results suggest that the manipulation of context influenced feature learning; that is, at least 10 consecutive trials were required before optimal scanning strategies could be developed and/or instituted. However, the training context manipulation did not affect the acquisition of an automatic attention response in a consistent task or the acquisition of a general skill for a varied task. Implications for task and system design and the development of training programs are discussed.


2018 ◽  
Author(s):  
Joram van Driel ◽  
Eduard Ort ◽  
Johannes J. Fahrenfort ◽  
Christian N. L. Olivers

AbstractMany important situations require human observers to simultaneously search for more than one object. Despite a long history of research into visual search, the behavioral and neural mechanisms associated with multiple-target search are poorly understood. Here we test the novel theory that the efficiency of looking for multiple targets critically depends on the mode of cognitive control the environment affords to the observer. We used an innovative combination of EEG and eye tracking while participants searched for two targets, within two different contexts: Either both targets were present in the search display and observers were free to prioritize either one of them, thus enabling proactive control over selection; or only one of the two targets would be present in each search display, which requires reactive control to reconfigure selection when the wrong target is prioritized. During proactive control, both univariate and multivariate signals of beta-band (15–35 Hz) power suppression prior to display onset predicted switches between target selections. This signal originated over midfrontal and sensorimotor regions and has previously been associated with endogenous state changes. In contrast, imposed target selections requiring reactive control elicited prefrontal power enhancements in the delta/theta-band (2–8 Hz), but only after display onset. This signal predicted individual differences in associated oculomotor switch costs, reflecting reactive reconfiguration of target selection. The results provide compelling evidence that multiple target representations are differentially prioritized during visual search, and for the first time reveal distinct neural mechanisms underlying proactive and reactive control over multiple-target search.Significance StatementSearching for more than one object in complex visual scenes can be detrimental for search performance. While perhaps annoying in daily life, this can have severe consequences in professional settings such as medical and security screening. Previous research has not yet resolved whether multiple-target search involves changing priorities in what people attend to, and how such changes are controlled. We approached these questions by concurrently measuring cortical activity and eye movements using EEG and eye tracking, while observers searched for multiple possible targets. Our findings provide the first unequivocal support for the existence of two modes of control during multiple-target search, which are expressed in qualitatively distinct time-frequency signatures of the EEG both before and after visual selection.


2015 ◽  
Vol 74 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Alexandre Coutté ◽  
Gérard Olivier ◽  
Sylvane Faure

Computer use generally requires manual interaction with human-computer interfaces. In this experiment, we studied the influence of manual response preparation on co-occurring shifts of attention to information on a computer screen. The participants were to carry out a visual search task on a computer screen while simultaneously preparing to reach for either a proximal or distal switch on a horizontal device, with either their right or left hand. The response properties were not predictive of the target’s spatial position. The results mainly showed that the preparation of a manual response influenced visual search: (1) The visual target whose location was congruent with the goal of the prepared response was found faster; (2) the visual target whose location was congruent with the laterality of the response hand was found faster; (3) these effects have a cumulative influence on visual search performance; (4) the magnitude of the influence of the response goal on visual search is marginally negatively correlated with the rapidity of response execution. These results are discussed in the general framework of structural coupling between perception and motor planning.


2008 ◽  
Vol 67 (2) ◽  
pp. 71-83 ◽  
Author(s):  
Yolanda A. Métrailler ◽  
Ester Reijnen ◽  
Cornelia Kneser ◽  
Klaus Opwis

This study compared individuals with pairs in a scientific problem-solving task. Participants interacted with a virtual psychological laboratory called Virtue to reason about a visual search theory. To this end, they created hypotheses, designed experiments, and analyzed and interpreted the results of their experiments in order to discover which of five possible factors affected the visual search process. Before and after their interaction with Virtue, participants took a test measuring theoretical and methodological knowledge. In addition, process data reflecting participants’ experimental activities and verbal data were collected. The results showed a significant but equal increase in knowledge for both groups. We found differences between individuals and pairs in the evaluation of hypotheses in the process data, and in descriptive and explanatory statements in the verbal data. Interacting with Virtue helped all students improve their domain-specific and domain-general psychological knowledge.


Author(s):  
Angela A. Manginelli ◽  
Franziska Geringswald ◽  
Stefan Pollmann

When distractor configurations are repeated over time, visual search becomes more efficient, even if participants are unaware of the repetition. This contextual cueing is a form of incidental, implicit learning. One might therefore expect that contextual cueing does not (or only minimally) rely on working memory resources. This, however, is debated in the literature. We investigated contextual cueing under either a visuospatial or a nonspatial (color) visual working memory load. We found that contextual cueing was disrupted by the concurrent visuospatial, but not by the color working memory load. A control experiment ruled out that unspecific attentional factors of the dual-task situation disrupted contextual cueing. Visuospatial working memory may be needed to match current display items with long-term memory traces of previously learned displays.


2000 ◽  
Vol 15 (2) ◽  
pp. 286-296 ◽  
Author(s):  
Arthur F. Kramer ◽  
Paul Atchley
Keyword(s):  

Author(s):  
Stanislav Dornic ◽  
Ragnar Hagdahl ◽  
Gote Hanson

Sign in / Sign up

Export Citation Format

Share Document