Augmenting metamodels with seamless support for planning, tracking, and slicing model evolution timelines

2021 ◽  
pp. 101031
Author(s):  
Michael Nieke ◽  
Adrian Hoff ◽  
Christoph Seidl ◽  
Ina Schaefer
Keyword(s):  
2021 ◽  
pp. 101034
Author(s):  
Kevin Feichtinger ◽  
Daniel Hinterreiter ◽  
Lukas Linsbauer ◽  
Herbert Prähofer ◽  
Paul Grünbacher

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mingli Wang ◽  
Huikuan Gu ◽  
Jiang Hu ◽  
Jian Liang ◽  
Sisi Xu ◽  
...  

Abstract Background and purpose To explore whether a highly refined dose volume histograms (DVH) prediction model can improve the accuracy and reliability of knowledge-based volumetric modulated arc therapy (VMAT) planning for cervical cancer. Methods and materials The proposed model underwent repeated refining through progressive training until the training samples increased from initial 25 prior plans up to 100 cases. The estimated DVHs derived from the prediction models of different runs of training were compared in 35 new cervical cancer patients to analyze the effect of such an interactive plan and model evolution method. The reliability and efficiency of knowledge-based planning (KBP) using this highly refined model in improving the consistency and quality of the VMAT plans were also evaluated. Results The prediction ability was reinforced with the increased number of refinements in terms of normal tissue sparing. With enhanced prediction accuracy, more than 60% of automatic plan-6 (AP-6) plans (22/35) can be directly approved for clinical treatment without any manual revision. The plan quality scores for clinically approved plans (CPs) and manual plans (MPs) were on average 89.02 ± 4.83 and 86.48 ± 3.92 (p < 0.001). Knowledge-based planning significantly reduced the Dmean and V18 Gy for kidney (L/R), the Dmean, V30 Gy, and V40 Gy for bladder, rectum, and femoral head (L/R). Conclusion The proposed model evolution method provides a practical way for the KBP to enhance its prediction ability with minimal human intervene. This highly refined prediction model can better guide KBP in improving the consistency and quality of the VMAT plans.


2021 ◽  
pp. 36-47
Author(s):  
Sergey Mitsyn ◽  
Egor Bolshakov

Various methods based on growing bodies are lately gaining attention in a context of inverse gravity problem that we call a family of “assembly methods”. A variant of method was adopted for GIS INTEGRO in original formulation that is fit for the problem of multiple bodies incorporated in an environment of varying density, in absolute densities (not density contrasts) that are however have to be a priori specified. Such formulation allowed the implementation of the method that is suitable for territory modeling in the regional scale. To workaround method’s instability a number of changes are proposed that consist of introduction of priority on atomic modifications, modification queue and assessment of model evolution instead of just the final result. The developed software allows processing of large grids (tens of millions of tiling elements) even on 5–8 year old desktops. Based on method approbation experience some insights and practice methods are presented. An application example is presented as part of work on modeling of Enisei-Khatanga regional depression territory.


Sign in / Sign up

Export Citation Format

Share Document