Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions

Author(s):  
Jiabin Zhou ◽  
Siliang Yang ◽  
Jiaguo Yu
2014 ◽  
Vol 248 ◽  
pp. 168-174 ◽  
Author(s):  
Xiang-Rong Jing ◽  
Yuan-Ying Wang ◽  
Wu-Jun Liu ◽  
Yun-Kun Wang ◽  
Hong Jiang

RSC Advances ◽  
2014 ◽  
Vol 4 (66) ◽  
pp. 35077-35083 ◽  
Author(s):  
Jinchun Xiao ◽  
Honghai Ji ◽  
Zhiqi Shen ◽  
Weiya Yang ◽  
Changyou Guo ◽  
...  

Facile fabrication of novel flower-like γ-Al2O3 with enhanced adsorption performance involving with contaminants.


2021 ◽  
Vol 267 ◽  
pp. 115086
Author(s):  
Mahboobeh Abbasi ◽  
Mohammad Mehdi Sabzehmeidani ◽  
Mehrorang Ghaedi ◽  
Ramin Jannesar ◽  
Ardeshir Shokrollahi

2021 ◽  
pp. 118084
Author(s):  
Ahmed M. Omer ◽  
Eman M. Abd El-Monaem ◽  
Mona M. Abd El-Latif ◽  
Gehan M. El-Subruiti ◽  
Abdelazeem S. Eltaweil

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1136 ◽  
Author(s):  
Qiang Li ◽  
Fei Pan ◽  
Wentao Li ◽  
Dongya Li ◽  
Haiming Xu ◽  
...  

In this study, a novel 2-vinylpyridine functionalized magnetic nanoparticle (Mag-PVP) was successfully prepared. The prepared Mag-PVP was characterized by transmission electronic microscopy (TEM), Fourier transform infrared spectrophotometry (FT-IR), vibrating sample magnetometry (VSM) and thermogravimetric analysis (TGA), and was used for the adsorption of bisphenol A (BPA) from aqueous solutions. Mag-PVP, which is composed of Fe3O4 nanoparticles and poly divinylbenzene-2-vinylpyridine (with a thickness of 10 nm), exhibited magnetic properties (Ms = 44.6 emu/g) and thermal stability. The maximum adsorption capacity (Qm) of Mag-PVP for BPA obtained from the Langmuir isotherm was 115.87 mg/g at 20 °C, which was more than that of Fe3O4 nanospheres. In the presence of NaCl, the improved adsorption capacity of Mag-PVP was probably attributed to the screening effect of Mag-PVP surface charge and salting-out effect. In the presence of CaCl2 and humic acid (HA), the adsorption capacity of BPA decreased due to competitive adsorption. The adsorption of BPA by Mag-PVP increased slightly with the increase in pH from 3.0 to 5.0 and obtained the largest adsorption amount at pH 5.0, which was probably attributed to hydrogen bonding interactions. Moreover, in actual water, Mag-PVP still showed excellent adsorption performance in removing BPA. The high adsorption capacity and excellent reusability performance in this work indicated that Mag-PVP was an effective adsorbent for removing BPA from aqueous solutions.


2021 ◽  
Vol 47 (10) ◽  
pp. 14290-14300
Author(s):  
Tingting Xiong ◽  
Yin Ye ◽  
Bin Luo ◽  
Liping Shen ◽  
Dongmei Wang ◽  
...  

Rare Metals ◽  
2021 ◽  
Author(s):  
Hao-Feng Wu ◽  
Yan-Hong Chao ◽  
Guo-Hua Xia ◽  
Jing Luo ◽  
Duan-Jian Tao ◽  
...  

2018 ◽  
Vol 30 (23) ◽  
pp. 8624-8629 ◽  
Author(s):  
Guojun Xie ◽  
Xidong Lin ◽  
Michael R. Martinez ◽  
Zelin Wang ◽  
He Lou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document