Systematic investigation of the effects of mixed cationic/anionic surfactants on the interfacial tension of a water/model oil system and their application to enhance crude oil recovery

Author(s):  
Han Jia ◽  
Xu Leng ◽  
Mei Hu ◽  
Yilei Song ◽  
Hongyan Wu ◽  
...  
SPE Journal ◽  
2008 ◽  
Vol 13 (02) ◽  
pp. 137-145 ◽  
Author(s):  
Kamlesh Kumar ◽  
Eric K. Dao ◽  
Kishore K. Mohanty

Summary Waterflooding recovers little oil from fractured carbonate reservoirs, if they are oil-wet or mixed-wet. Surfactant-aided gravity drainage has the potential to achieve significant oil recovery by wettability alteration and interfacial tension (IFT) reduction. The goal of this work is to investigate the mechanisms of wettability alteration by crude oil components and surfactants. Contact angles are measured on mineral plates treated with crude oils, crude oil components, and surfactants. Mineral surfaces are also studied by atomic force microscopy (AFM). Surfactant solution imbibition into parallel plates filled with a crude oil is investigated. Wettability of the plates is studied before and after imbibition. Results show that wettability is controlled by the adsorption of asphaltenes. Anionic surfactants can remove these adsorbed components from the mineral surface and induce preferential water wettability. Anionic surfactants studied can imbibe water into initially oil-wet parallel-plate assemblies faster than the cationic surfactant studied. Introduction Waterflooding is an effective method to improve oil recovery from reservoirs. For fractured reservoirs, waterflooding is effective only when water imbibes into the matrix spontaneously. If the matrix is oil-wet, the injected water displaces the oil only from the fractures. Water does not imbibe into the oil-wet matrix because of negative capillary pressure, resulting in very low oil recovery. Thus there is a need of tertiary or enhanced oil recovery techniques like surfactant flooding (Bragg et al. 1982; Kalpakci et al. 1990; Krumrine et al. 1982a; Krumrine et al. 1982b; Falls et al. 1992) to maximize production from such reservoirs. These techniques were developed in 1960s through 1980s for sandstone reservoirs, but were not widely applied because of low oil prices. Austad et al. (Austad and Milter 1997; Standnes and Austad 2000a; Standnes and Austad 2000b; Standnes and Austad 2003c) have recently demonstrated that surfactant flooding in chalk cores can change the wettability from oil-wet to water-wet conditions, thus leading to higher oil recovery (~70 % as compared to 5% when using pure brine). In 2003 (Standnes and Austad 2003a; Standnes and Austad 2003b; Strand et al. 2003), they identified cheap commercial cationic surfactants, C10NH2 and bioderivatives from the coconut palm termed Arquad and Dodigen (priced at US$ 3 per kg). These surfactants could recover 50 to 90% of oil in laboratory experiments. However, the cost involved is still high because of the required high concentration (~1 wt%) and thus there is a need to evaluate other surfactants. The advantage of using cationic surfactants for carbonates is that they have the same charge as the carbonate surfaces and thus have low adsorption. Nonionic surfactants and anionic surfactants have been tested by Chen et al. (2001) in both laboratory experiments and field pilots. Computed tomography scans revealed that surfactant imbibition was caused by countercurrent flow in the beginning and gravity-driven flow during the later stages. The basic idea behind these techniques is to alter wettability (from oil-wet to water-wet) and lower interfacial tension. Hirasaki and Zhang (2004) have studied different ethoxy and propoxy sulfates to achieve very low interfacial tension and alter wettability from oil-wet to intermediate-wet in laboratory experiments. The presence of Na2CO3 reduces the adsorption of anionic surfactant by lowering the zeta potential of calcite surfaces, and thus dilute anionic surfactant/alkali solution flooding seems to be very promising in recovering oil from oil-wet fractured carbonate reservoirs. It is very important to understand the mechanism of wettability alteration to design effective surfactant treatments and identify the components of oil responsible for making a surface oil-wet. It is postulated that oil is often produced in source rocks and then migrates into originally water-wet reservoirs. Some of the ionic/polar components of crude oil, mostly asphaltenes and resins, collect at the water/oil interface (Freer et al. 2003) and adsorb onto the mineral surface, thus rendering the surface oil-wet. In this work, we try to understand the nature of the adsorbed components by AFM. Recently, AFM has been used extensively to get the force-distance measurements between a tip and a surface. These force measurements can be used to calculate the surface energies using the Johnson-Kendall-Roberts (JKR), the Derjaguin-Muller-Toporov (DMT), and like theories (van der Vegte and Hadziioannou 1997; Schneider et al. 2003). AFM is also used extensively for imaging surfaces. It can be used in the contact mode for hard surfaces and in the tapping mode for soft surfaces. It can be used to image dry surfaces or wet surfaces; tapping mode in water is a relatively new technique. AFM images have been used to confirm the deposition of oil components on mineral surfaces (Buckley and Lord 2003; Toulhoat et al. 1994). In this work, crude-oil-treated mica surface is probed using atomic force microscopy before and after surfactant treatment to study the effects of surfactant. AFM measurements are correlated with contact-angle measurements. We also study surfactant solution imbibition into an initially oil-wet parallel plate assembly to relate wettability to oil recovery. Our experimental methodology is described in the next section, the results are discussed in the following section, and the conclusions are summarized in the last section.


2008 ◽  
Vol 11 (05) ◽  
pp. 933-939 ◽  
Author(s):  
Kristian Jessen ◽  
Franklin M. Orr

Summary Measurements of the interfacial tension (IFT) of mixtures of a reservoir fluid and injection gas at various pressures have been proposed as an experimental method for predicting the minimum miscibility pressure (MMP) in an experiment referred to as the vanishing-IFT (VIT) technique. In this paper, we analyze the accuracy and reliability of the VIT approach using phase equilibrium and slimtube experimental observations and equation-of-state (EOS) calculations of the behavior of VIT experiments for the same systems. We consider 13 gas/oil systems for which phase equilibrium and density data and slimtube measurements of the MMP are available. We show that tuned EOS characterizations using 15 components to represent the gas/oil systems yield calculations of phase compositions and densities and calculated MMPs that reproduce the experimental observations accurately. We assume that IFTs can be calculated with a parachor expression, and we simulate the behavior of a series of VIT experiments with different mixture compositions in the VIT cell. We show that compositions of mixtures created in the VIT cell are not, in general, critical mixtures and that calculated estimates of the MMP obtained by the VIT approach depend strongly on the composition of the mixture used in the experiment. We show also that those MMP estimates may or may not differ significantly from values obtained in slimtube displacements. Fortuitously chosen mixture compositions can result in VIT-experiment estimates that agree well with slimtube MMPs, while for other mixtures, the error of the estimates can be quite large. In particular, we show that errors in the VIT-technique estimate of the MMP are often large for gas/oil systems for which the first-contact miscibility pressure (FCMP) is much larger than the slimtube MMP. We conclude, therefore, that the VIT experiment is not a reliable single source of information regarding the development of multicontact miscibility in multicomponent gas/oil displacements. Introduction Many oil fields are now candidates for enhanced-oil-recovery processes such as tertiary gasfloods or miscible water-alternating-gas injection schemes. The MMP is an important parameter in the design and implementation of these displacement processes and, hence, it is equally important that the MMP be determined by a method that is both reliable and accurate. Several methods have been proposed for measurement of the MMP. The slimtube-displacement experiment is the most commonly used approach (Yellig and Metcalfe 1980; Holm and Josendal 1982; Orr et al. 1982). Because of the time-consuming process of performing multiple slimtube-displacement experiments, alternative experimental approaches have been proposed. Some investigators have suggested use of a rising-bubble experiment, in which observations of bubbles of injection gas rising through oil (Christiansen and Haines 1987; Eakin and Mitch 1988; Novosad et al. 1990; Sibbald et al. 1991; Mihcakan and Poettmann 1994), are a basis of a method for determining the MMP. Zhou and Orr (1988) concluded that the changes in bubble behavior observed in the rising-bubble experiment are caused primarily by changes in IFT as components in the bubble dissolve in the oil and components in the oil transfer to the bubble. They showed that rising-bubble experiments could be used to measure the MMP for vaporizing gas drives, but are less accurate for condensing gas drives, while a drop of oil falling through gas could be used to determine the MMP for condensing gas drives. Whether either a falling-drop or a rising-bubble experiment could be used to determine the MMP accurately in condensing/vaporizing gas drives such as those described by Zick (1986), Stalkup (1987), and Johns et al. (1993) has not been determined. Rao and coworkers proposed a different use of IFT observations to determine the MMP (Rao 1997, 1999; Rao and Lee 2002, 2003; Ayirala et al. 2003; Ayirala and Rao 2004, 2006a, 2006b; Sequeira 2006). They measured IFTs for pendant drops of oil suspended in a cell containing a two-phase mixture of the injection gas and the oil. In that approach, known as the VIT experiment, the IFT is measured at a sequence of pressures, and the MMP is taken to be the pressure at which the IFT plotted as a function of pressure extrapolates to zero IFT. Orr and Jessen (2007) presented an analysis of the VIT technique based on EOS calculations for well-characterized ternary and quaternary gas/oil systems and demonstrated that the VIT experiment may give estimates of the MMP that differ significantly from the MMP based on critical tie-lines for condensing, vaporizing, and condensing/vaporizing gas drives. In this paper, we extend the analysis of Orr and Jessen (2007) and calculate the IFT behavior that would be observed in the VIT experiment for gas displacements of multicomponent crude-oil systems. We assess the accuracy of MMP estimated by the VIT approach for 13 multicomponent gas/oil displacements for which experimental phase-equilibrium and slimtube data are available, and we demonstrate that for these multicomponent crude-oil systems, the VIT approach can give estimates of the MMP that are close to the actual MMP or that are significantly in error, depending on the compositions of mixtures created in the equilibrium cell.


1982 ◽  
Vol 22 (04) ◽  
pp. 472-480 ◽  
Author(s):  
S.L. Enedy ◽  
S.M. Farouq Ali ◽  
C.D. Stahl

Abstract This investigation focused on developing an efficient chemical flooding process by use of dilute surfactant/polymer slugs. The competing roles of interfacial tension (IFT) and equivalent weight (EW) of the surfactant used, as well as the effect of different types of preflushes on tertiary oil recovery, were studied. Volume of residual oil recovered per gram of surfactant used was examined as a function of these variables and slug size. Tertiary oil recovery increased with an increase in the dilute surfactant slug size and buffer viscosity. However, low IFT does not ensure high oil recovery. An increase in surfactant EW used actually can lead to a decrease in oil recovery. Tertiary oil recovery was also sensitive to preflush type. Reasons for the observed behavior are examined in relation to the surfactant properties as well as to adsorption and retention. Introduction Two approaches are being used in development of surfactant /polymer-type chemical floods:a small-PV slug of high surfactant concentration, ora large-PV slug of low surfactant concentration. This study deals with the latter-i.e., dilute aqueous slugs (with polymer added in many cases) containing less than or equal 2.0 wt% sulfonates and about 0. 1 wt% crude oil. Because the dilute slug contains little of the dispersed phase, an aqueous surfactant slug usually is unable to displace the oil miscibly; however, residual brine is miscible with the slug if the inorganic salt concentration is not excessive. The dilute, aqueous petroleum sulfonate slug lowers the oil/water IFT. overcoming capillary forces. This process commonly is referred to as locally immiscible oil displacement. Objectives The objective of this work was to develop an efficient dilute surfactant/polymer slug for the Bradford crude with a variety of sulfonate combinations. Effects of varying the slug characteristics such as equivalent weight, IFT, salt concentration, etc. on tertiary oil recovery were examined. Materials and Experimental Details The petroleum sulfonates and the dilute slugs used in this study are listed in Tables 1 and 2, respectively. The crude oil tested was Bradford crude 144 degrees API (0.003 g/cm3), 4 cp (0.004 Pa.s)]. The polymer solutions were prefiltered and driven by brines of various concentrations (0.02, 1.0, and 2.0% NACl). In many cases, the polymer was added to the slug. Conventional coreflood equipment described in Ref. 3 was used. Berea sandstone cores (unfired) 2 in, (5 cm) in diameter and 4 ft (1.3 m) in length were used for all tests, with a new core for each test. Porosity ranged from 19.3 to 21.0%, permeability averaged 203 md, and the waterflood residual oil saturation averaged 33.1%. IFT's were measured by the spinning drop method. Viscosities were measured with a Brookfield viscosimeter and are reported here for 6 rpm (0.1 rev/s). The dilute slugs containing polymer exhibited non-Newtonian behavior. Without polymer the behavior was Newtonian. Sulfonate concentration in the oleic phase was determined by an infrared spectrophotometer, while the concentration in the aqueous phase was measured by ultraviolet (UV) absorbance analysis. Discussion of Results Slug development in this investigation was an evolutionary process. Dilute slugs were developed and core tested in a sequential manner (Table 2). Slugs 100 through 200 yielded insignificant ternary oil recoveries (largely because of excessive adsorption and retention), but the results helped determine improvements in slug compositions and in the overall chemical flood. This paper gives results for the more efficient slugs only. SPEJ P. 472^


Sign in / Sign up

Export Citation Format

Share Document