Competing Roles of Interfacial Tension and Surfactant Equivalent Weight in the Development of a Chemical Flood

1982 ◽  
Vol 22 (04) ◽  
pp. 472-480 ◽  
Author(s):  
S.L. Enedy ◽  
S.M. Farouq Ali ◽  
C.D. Stahl

Abstract This investigation focused on developing an efficient chemical flooding process by use of dilute surfactant/polymer slugs. The competing roles of interfacial tension (IFT) and equivalent weight (EW) of the surfactant used, as well as the effect of different types of preflushes on tertiary oil recovery, were studied. Volume of residual oil recovered per gram of surfactant used was examined as a function of these variables and slug size. Tertiary oil recovery increased with an increase in the dilute surfactant slug size and buffer viscosity. However, low IFT does not ensure high oil recovery. An increase in surfactant EW used actually can lead to a decrease in oil recovery. Tertiary oil recovery was also sensitive to preflush type. Reasons for the observed behavior are examined in relation to the surfactant properties as well as to adsorption and retention. Introduction Two approaches are being used in development of surfactant /polymer-type chemical floods:a small-PV slug of high surfactant concentration, ora large-PV slug of low surfactant concentration. This study deals with the latter-i.e., dilute aqueous slugs (with polymer added in many cases) containing less than or equal 2.0 wt% sulfonates and about 0. 1 wt% crude oil. Because the dilute slug contains little of the dispersed phase, an aqueous surfactant slug usually is unable to displace the oil miscibly; however, residual brine is miscible with the slug if the inorganic salt concentration is not excessive. The dilute, aqueous petroleum sulfonate slug lowers the oil/water IFT. overcoming capillary forces. This process commonly is referred to as locally immiscible oil displacement. Objectives The objective of this work was to develop an efficient dilute surfactant/polymer slug for the Bradford crude with a variety of sulfonate combinations. Effects of varying the slug characteristics such as equivalent weight, IFT, salt concentration, etc. on tertiary oil recovery were examined. Materials and Experimental Details The petroleum sulfonates and the dilute slugs used in this study are listed in Tables 1 and 2, respectively. The crude oil tested was Bradford crude 144 degrees API (0.003 g/cm3), 4 cp (0.004 Pa.s)]. The polymer solutions were prefiltered and driven by brines of various concentrations (0.02, 1.0, and 2.0% NACl). In many cases, the polymer was added to the slug. Conventional coreflood equipment described in Ref. 3 was used. Berea sandstone cores (unfired) 2 in, (5 cm) in diameter and 4 ft (1.3 m) in length were used for all tests, with a new core for each test. Porosity ranged from 19.3 to 21.0%, permeability averaged 203 md, and the waterflood residual oil saturation averaged 33.1%. IFT's were measured by the spinning drop method. Viscosities were measured with a Brookfield viscosimeter and are reported here for 6 rpm (0.1 rev/s). The dilute slugs containing polymer exhibited non-Newtonian behavior. Without polymer the behavior was Newtonian. Sulfonate concentration in the oleic phase was determined by an infrared spectrophotometer, while the concentration in the aqueous phase was measured by ultraviolet (UV) absorbance analysis. Discussion of Results Slug development in this investigation was an evolutionary process. Dilute slugs were developed and core tested in a sequential manner (Table 2). Slugs 100 through 200 yielded insignificant ternary oil recoveries (largely because of excessive adsorption and retention), but the results helped determine improvements in slug compositions and in the overall chemical flood. This paper gives results for the more efficient slugs only. SPEJ P. 472^

2019 ◽  
Vol 35 (2) ◽  
pp. 571-576
Author(s):  
Ahmed Sony ◽  
Hamdan Suhaimi ◽  
Laili Che Rose

A group of chemicals known as surfactants are widely used in industries. Their presence in any formulation, albeit little, exhibited superior functionality of the end-products. The dual hydrophobic and hydrophilic moiety of the structure have been shown to be responsible for reduction of surface/ interfacial tension and formation of micelles. In this work, a chemical flooding method using sodium dodecyl sulphate, SDS and its mixture with gum arabic, were carried out to study the recovery and efficiency of extracting the residual oil from the oil reservoirs. Two sets of experiments namely SDS and its mixture with gum arabic flooding at concentrations of SDS between 0.1-0.6 percent by weight are conducted. The percentage of gum arabic used is 16 percent by weight. Results shows that the use of SDS-Gum arabic flooding method yielded higher extraction of oil about 4.0 percent compared to SDS flooding. This suggests that the use of SDS and gum Arabic mixture is more efficient in increasing the amount of oil recovery.


2018 ◽  
Vol 40 (2) ◽  
pp. 85-90
Author(s):  
Yani Faozani Alli ◽  
Edward ML Tobing ◽  
Usman Usman

The formation of microemulsion in the injection of surfactant at chemical flooding is crucial for the effectiveness of injection. Microemulsion can be obtained either by mixing the surfactant and oil at the surface or injecting surfactant into the reservoir to form in situ microemulsion. Its translucent homogeneous mixtures of oil and water in the presence of surfactant is believed to displace the remaining oil in the reservoir. Previously, we showed the effect of microemulsion-based surfactant formulation to reduce the interfacial tension (IFT) of oil and water to the ultralow level that suffi cient enough to overcome the capillary pressure in the pore throat and mobilize the residual oil. However, the effectiveness of microemulsion flooding to enhance the oil recovery in the targeted representative core has not been investigated.In this article, the performance of microemulsion-based surfactant formulation to improve the oil recovery in the reservoir condition was investigated in the laboratory scale through the core flooding experiment. Microemulsion-based formulation consist of 2% surfactant A and 0.85% of alkaline sodium carbonate (Na2CO3) were prepared by mixing with synthetic soften brine (SSB) in the presence of various concentration of polymer for improving the mobility control. The viscosity of surfactant-polymer in the presence of alkaline (ASP) and polymer drive that used for chemical injection slug were measured. The tertiary oil recovery experiment was carried out using core flooding apparatus to study the ability of microemulsion-based formulation to recover the oil production. The results showed that polymer at 2200 ppm in the ASP mixtures can generate 12.16 cP solution which is twice higher than the oil viscosity to prevent the fi ngering occurrence. Whereas single polymer drive at 1300 ppm was able to produce 15.15 cP polymer solution due to the absence of alkaline. Core flooding experiment result with design injection of 0.15 PV ASP followed by 1.5 PV polymer showed that the additional oil recovery after waterflood can be obtained as high as 93.41% of remaining oil saturation after waterflood (Sor), or 57.71% of initial oil saturation (Soi). Those results conclude that the microemulsion-based surfactant flooding is the most effective mechanism to achieve the optimum oil recovery in the targeted reservoir.


1973 ◽  
Vol 13 (04) ◽  
pp. 191-199 ◽  
Author(s):  
Walter W. Gale ◽  
Erik I. Sandvik

Abstract This paper discusses results of a laboratory program undertaken to define optimum petroleum program undertaken to define optimum petroleum sulfonates for use in surfactant flooding. Many refinery feedstocks, varying in molecular weight and aromatic content, were sulfonated using different processes, Resulting sulfonates were evaluated by measuring interracial tensions, adsorption-fractionation behavior, brine compatability, and oil recovery characteristics, as well as by estimating potential manufacturing costs. The best combination o[ these properties is achieved when highly aromatic feedstocks are sulfonated to yield surfactants having very broad equivalent weight distributions. Components of the high end of the equivalent weight distribution make an essential contribution to interfacial tension depression. This portion is also strongly adsorbed on mineral surfaces and has low water solubility. Middle Portions of the equivalent weight distribution serve as sacrificial adsorbates while lower equivalent weight components Junction as micellar solubilizers for heavy constituents. Results from linear laboratory oil-recovery tests demonstrate interactions of various portions of the equivalent weight distribution. portions of the equivalent weight distribution Introduction Four major criteria used in selecting a surfactant for a tertiary oil-recovery process are:low oil-water interfacial tension,low adsorption,compatibility with reservoir fluids andlow cost. Low interfacial tension reduces capillary forces trapping residual oil in porous media allowing the oil to be recovered. Attraction of surfactant to oil-water interfaces permits reduction of interfacial tension; however, attraction to rock-water interfaces can result in loss of surfactant to rock surfaces by adsorption. Surfactant losses can also arise from precipitation due to incompatibility with reservoir fluids. Low adsorption and low cost are primarily economic considerations, whereas low interfacial tension and compatibility are necessary for workability of the process itself. Petroleum sulfonates useful in surfactant flooding have been disclosed in several patents; however, virtually no detailed information is available in the nonpatent technical literature. Laboratory evaluation of surfactants consisted of determining their adsorption, interfacial tension, and oil recovery properties. Adsorption measurements were made by static equilibration of surfactant solutions with crushed rock and clays and by flowing surfactant solutions through various types of cores. Interfacial tensions were measured using pendant drop and capillary rise techniques. Berea, pendant drop and capillary rise techniques. Berea, Bartlesville, and in some cases, field cores containing brine and residual oil were flooded with sulfonate solutions in order to determine oil recovery. Fluids used in these displacement tests are described in Table 1. Unless otherwise specified, displacements of Borregos crude oil were carried out with Catahoula water as the resident aqueous phase after waterflooding and displacements of phase after waterflooding and displacements of Loudon crude oil with 1.5 percent NaCl as the resident aqueous phase. In those examples where banks of surfactants were injected, drive water following the surfactant had the same composition as the resident water. Concentrations of sulfonates are reported on a 100-percent activity basis. PETROLEUM SULFONATE CHEMISTRY PETROLEUM SULFONATE CHEMISTRY A substantial portion of the total research effort TABLE 1 - PROPERTIES OF FLUIDS USEDIN FLOODING TESTS


1978 ◽  
Vol 18 (03) ◽  
pp. 167-172 ◽  
Author(s):  
V.K. Bansal ◽  
D.O. Shah

Abstract The addition of an ethoxylated sulfonate (EOR-200) and its effect on the salt tolerance and optimal salinity of formulations containing a petroleum sulfonate (TRS 10-410 or Petrostep-465) petroleum sulfonate (TRS 10-410 or Petrostep-465) and an alcohol was investigated. When salt concentration increases, the mixed surfactant formulations undergo the following changes: isotropic, birefringent, phase separation. The salt concentration required for phase separation increased with the fraction of the ethoxylated sulfonate in the formulation. When mixed surfactant formulations were equilibrated with an equal volume of oil (decane or hexadecane) a middle-phase microemulsion formed in a specific salinity range. The optimal salinity increased with the fraction of the ethoxylated sulfonate in the mixed surfactant formulations. At optimal salinity as high as 32-percent NaCl, these surfactant formulations exhibited ultra-low interfacial tension (10-2 to 10-3 dynes/cm). These formulations also showed that an increase in the solubilization parameter decreases the interfacial tension. parameter decreases the interfacial tension Introduction The potential use of petroleum sulfonates for tertiary oil recovery has been discussed and several patents have been issued during the past two decades. The solubilization, phase behavior and interfacial tension of petroleum sulfonates have been studied. Petroleum sulfonates are known to exhibit relatively low salt tolerance and a low value of optimal salinity (1- to 2-percent NACl). Dauben and Froning studied the effect of Amoco Wellaid 320 (ethoxylated alcohol) on a surfactant formulation that was primarily a petroleum sulfonate. They observed that surfactant formulations prepared using ethoxylated alcohols as cosurfactants exhibited improved temperature stability and were less sensitive to salts, compared with formulations prepared with isopropanol as a cosurfactant. Several prepared with isopropanol as a cosurfactant. Several patents were issued on the possible use of patents were issued on the possible use of ethoxylated alcohols and ethoxylated sulfonates in oil recovery formulations. This study reports the effect of blending an ethoxylated sulfonate (EOR-200) with a petroleum sulfonate (TRS 10-410 or Petrostep-465) on various properties of the mixed surfactant formulations (for properties of the mixed surfactant formulations (for examples, salt tolerance, optimal salinity, interfacial tension, and solubilization). MATERIALS AND METHODS Petroleum sulfonates TRS 10-410 and Petrostep-465 were supplied by Witco Chemicals and Stepan Petrostep-465 were supplied by Witco Chemicals and Stepan Chemicals, respectively. Ethoxylated sulfonate EOR-200 was supplied by Ethyl Corp. Paraffinic oils (n-hexadecane and n-decane) as well as 99-percent pure isobutanol and n-pentanol were purchased from Chemicals Samples Co. All purchased from Chemicals Samples Co. All surfactants were used as received. The average equivalent weight of TRS 10-410 and Petrostep-465 was 420 and 465, respectively, and the activity of surfactants was approximately 60 percent (as reported by the manufacturers). The molecular weight of EOR-200 was given as 523 by Ethyl and the sample contained 25.3 weight percent active solid surfactant. Aqueous solutions composed of Petrostep-465 (5 percent) and n-pentanol (2 percent) were prepared on the basis of weight. Aqueous surfactant solutions were equilibrated with the same volume of n-decane. Optimal salinity values were obtained using the approach described by Healy and Reed. The effect of EOR-200 on the properties of mixed surfactant formulations was studied by gradually replacing Petrostep-465 with EOR-200 and keeping the total surfactant concentration constant at 5 weight percent. Another surfactant formulation studied was composed of TRS 10-410 (5 percent) and IBA (3 percent). Optimal salinity was determined using percent). Optimal salinity was determined using n-hexadecane. TRS 10-410 was replaced gradually by EOR-200, keeping the total surfactant concentration constant at 5 weight percent. The systems studied are tabulated in Table 1. SPEJ P. 167


1981 ◽  
Vol 21 (04) ◽  
pp. 493-499 ◽  
Author(s):  
J.H. Runnels ◽  
C.J. Engel

Abstract An procedure is given for separating surfactant precursors that occur in some crude oils. The effect of the precursors on the properties of the oils are described also. The separations were made by silica gel chromatography on crude oil from which the asphaltenes had been removed. The effect of the precursors on the properties of the crude was evaluated by blending the surfactant precursors into the original oil, a modified oil, or a hydrocarbon solvent such as benzene. Precursors activated and converted to surface active materials by a strong base such as sodium hydroxide are effective in reducing the interfacial tension between the oil and aqueous phase. Occurrence of precursors in crude oils is essential for improved oil recovery by the causticflood process. The procedure for separating the precursors should provide a viable means for evaluating the applicability of a causticflood tertiary oil recovery process to a particular crude or reservoir. Introduction Tertiary oil recovery by the causticflood process is inherently dependent on naturally occurring surfactant precursors in the crude. The surfactant precursors react with the caustic (base) in the floodwater to form surface active compounds that reduce the interfacial tension between the crude and aqueous phase, alter the wettability of the mineral surfaces, or reduce rigid film formation at the crude/aqueous interface. In laboratory oil-recovery tests, these mechanisms stimulate oil production characterized by increased production at caustic breakthrough and a high oil/water ratio after breakthrough. An early effort to identify the surfactant precursors in a Rio Bravo (CA) crude concluded that the surfactant precursors were related closely to the asphaltene and resin fractions of the crude. Subsequent studies using an Eichlingen Niedersachen (West German) crude and a Ventura (CA) crude concluded that the surfactant precursors were acids and phenols, respectively. The extensive work of Seifert established that the surfactant precursors of a Ventura crude were carboxylic acids and that the phenolic components of the crude were interfacially inactive. The purpose of our study was to develop a simple and practical method of separating surfactant precursors from crude oil and to evaluate their effect on the interfacial tension, acid number, and other properties of the crude. The separation technique was developed using Smackover Nacatoch crude and the surfactant precursors evaluated were obtained from the same crude. Description of Smackover Nacatoch Crude The Smackover reservoir is located in southern Arkansas, and the Nacatoch pay zone is the shallowest of five pay zones. The crude has an API gravity of 21 degrees, a viscosity of 160 cp at room temperature, and is produced from an unconsolidated sand formation about 2,000 ft deep. Preliminary studies showed that the interfacial tension between the crude and an aqueous phase was reduced from about 12 to 0.02 dyne/cm when the pH of the aqueous phase was increased from 7.0 to 12.5 with sodium hydroxide. The significant reduction in interfacial tension at higher pH's indicated that the crude contained a relatively high concentration of surfactant precursors that were converted to surface active materials by sodium hydroxide. SPEJ P. 493^


2014 ◽  
Vol 1004-1005 ◽  
pp. 688-691
Author(s):  
Lu Ming Jiang ◽  
Qing Zhe Jiang ◽  
Zhao Zheng Song ◽  
Xiao Xiao

We investigate six different surfactants in interfacial tension (IFT) between the surfactant solution and the crude oil from Suijng oilfield. Based on the measurement of interfacial tension, the anion surfactant Heavy alkylbenzene sulfonate (HABS) and non-ionic surfactant alkyl glycoside (APG) are selected for the formulation of mixed surfactant. The IFT between the mixed surfactant solution comprising the HABS and APG and crude oil from Suijing can be reduced to ultralow.The experimental results indicate that the selected mixed surfactant formulation (0.20%HABS+0.10%APG) has a good performance on the tolerance of temperature and salinity and the coreflood test result indicate that the effective of the formulation was high which led to significant oil recovery (56.48%TOR).


1982 ◽  
Vol 22 (01) ◽  
pp. 37-52 ◽  
Author(s):  
Jorge E. Puig ◽  
Elias I. Franses ◽  
Yeshayahu Talmon ◽  
H. Ted Davis ◽  
Wilmer G. Miller ◽  
...  

Abstract Surfactant waterflooding processes that rely on ultralow interfacial tensions suffer from surfactant retention by reservoir rock and from the need to avoid injectivity problems. New findings reported here open the possibility that by delivering the surfactant in vesicle form, more successful low-concentration, alcohol-free surfactant waterflooding processes can be designed. Basic studies of low concentration (less than 2 wt %) aqueous dispersions of lamellar liquid crystals of a model surfactant, Texas No. 1, have established the role of dispersed liquid crystallites in the achievement of ultralow tensions between oil and water. Recent work, including fast-freeze, cold-stage transmission electron microscopy (TEM), reveals that sonication both in the absence and the presence of sodium chloride converts particulate dispersions of Texas No. 1 into dispersions of vesicles, which are spheroidal bilayers or multilayers, less than 0.1 mum in diameter filled with aqueous phase. Vesicles ordinarily revert only very slowly to the bulk liquid crystalline state. We find, however, that their stability depends on their preparation and salinity history, and that contact with oil can accelerate greatly the reversion of a vesiculated dispersion and enable it to produce low tensions between oil and water. Tests with Berea cores show that surfactant retention and attendant pressure buildup can be reduced greatly by sonicating Texas No. 1 dispersions to convert liquid crystallites to vesicles. In simple core-flooding experiments both the unsonicated liquid crystalline dispersions and the sonicated vesicle dispersions are able to produce substantial amounts of residual oil. We point out implications and directions for further investigation. Introduction Methods of enhancing, petroleum recovery, especially tertiary recovery, following the primary and secondary stages, are under intense research and development. Among these are at least two classes of surfactant-based recovery methods-surfactant waterflooding and so-called micellar or microemulsion flooding. Gilliland and Conley suggest that of the various enhanced-recovery methods, surfactant waterflooding has the potential for the widest application in the U.S. Residual oil is trapped as blobs in porous rock by capillary forces. The number of mechanisms is limited both for reducing entrapment and for mobilizing that residual oil remaining entrapped, there by improving the microscopic displacement efficiency of a petroleum recovery process. Taber and Melrose and Brandner established that tertiary oil recovery by an immiscible flooding process is possible by increasing the capillary number, which measures the ratio of Darcy flow forces of mobilization to capillary forces of entrapment. In practice this can be achieved by lowering the oil-water interfacial tension to about 10 mN/m or less. That this is feasible in the surfactant waterflooding range-i.e. at surfactant concentration less than those characterizing the microemulsion flooding range-and in the absence of cosurfactants or cosolvents that typify microemulsions is well established. Gale and Sandvik suggested four criteria for selecting a surfactant for a tertiary oil-recovery process:low oil-water interfacial tension,low adsorption.compatibility with reservoir fluids, andlow cost. For a given oil and type of surfactant, it has been shown that the interfacial tensions are extremely sensitive to surfactant molecular weight. SPEJ P. 37^


1978 ◽  
Vol 18 (04) ◽  
pp. 242-252 ◽  
Author(s):  
W.H. Wade ◽  
James C. Morgan ◽  
R.S. Schechter ◽  
J.K. Jacobson ◽  
J.L. Salager

Abstract The conditions necessary for optimum low tension and phase behavior at high surfactant concentrations are compared with those required at low surfactant concentrations, where solubilization effects are not usually visible. Major differences in tension behavior between the high and low concentration systems may be observed when the surfactant used contains a broad spectrum of molecular species, or if a higher molecular weight alcohol is present, but not otherwise in the systems studied. We compared the effects of a number of aliphatic alcohols on tension with phase behavior. An explanation of these results, and also of other observed parameter dependences, is proposed in terms of changes in surfactant chemical potential. Surfactant partitioning data is presented that supports this concept. Introduction Taber and Melrose and Brandner established that tertiary oil recovery by an immiscible flooding process should be possible at low capillary process should be possible at low capillary numbers. In practice, the required capillary number, which is a measure of the ratio of viscous to capillary forces governing displacement of trapped oil, may be achieved by lowering the oil/water interfacial tension to about 10(-3) dyne/cm, or less. Subsequent research has identified a number of surfactants that give tensions of this order with crude oils and hydrocarbon equivalents. Interfacial tension studies tended to fall into two groups. Work at low surfactant concentrations, typically 0.7 to 2 g/L, has established that a crude oil may be assigned an equivalent alkane carbon number. Using pure alkanes instead of crude oil has helped the study of system parameters affecting low tension behavior. Important parameters examined include surfactant molecular structure, and electrolyte concentration, surfactant concentration, surfactant molecular weight, and temperature. At higher surfactant concentrations, interfacial tension has been linked to the phase behavior of equilibrated systems. When an aqueous phase containing surfactant (typically 30 g/L), electrolyte, and low molecular weight alcohol is equilibrated with a hydrocarbon, the surfactant may partition largely into the oil phase, into the aqueous phase, or it may be included in a third (middle) phase containing both water and hydrocarbon. Low interfacial tensions occur when the solubilization of the surfactant-free phase (or phases) into the surfactant-containing phase is maximized. Maximum solubilization and minimum tensions have been shown to be associated with the formation of a middle phase. Both the high and low surfactant concentration studies have practical importance because even though a chemical flood starts at high concentration, degradation of the injected surfactant slug will move the system toward lower concentrations. This study investigates the relationship between tension minima found with low concentration systems, and low tensions found with equivalent systems at higher surfactants concentrations, particularly those in which third-phase formation occurs. Many of the systems studied here contain a low molecular weight alcohol, as do most surfactant systems described in the literature or proposed for actual oil recovery. Alcohol originally was added to surfactant systems to help surfactant solubility, but can affect tensions obtained with alkanes, and with refined oil. Few systematic studies of the influence of alcohol on tension behavior exist. Puerto and Gale noted that increasing the alcohol Puerto and Gale noted that increasing the alcohol molecular weight decreases the optimum salinity for maximum solubilization and lowest tensions. The same conclusions were reached by Hsieh and Shah, who also noted that branched alcohols had higher optimum salinities than straight-chain alcohols of the same molecular weight. Jones and Dreher reported equivalent solubilization results with various straight- and branched-chain alcohols. In this study, we fix the salinity of each system and instead vary the molecule; weight of the hydrocarbon phase. SPEJ P. 242


1978 ◽  
Vol 18 (06) ◽  
pp. 409-417 ◽  
Author(s):  
D.T. Wasan ◽  
S.M. Shah ◽  
N. Aderangi ◽  
M.S. Chan ◽  
J.J. McNamara

Original manuscript received in Society of Petroleum Engineers office Sept. 20, 1977. Paper accepted for publication June 2, 1978. Revised manuscript received Aug. 2, 1978. Paper (SPE 6846) was presented at SPE-AIME 52nd Annual Fall Technical Conference and Exhibition, held in Denver, Oct. 9-12, 1977. Abstract Results of experiments on the coalescence of crude oil drops at an oil-water interface and interdroplet coalescence in crude oil-water emulsions containing petroleum sulfonates and cosurfactant as surfactant systems with other chemical additives were analyzed in terms of interracial viscosity, interfacial tension, interfacial charge, and thickness of the films surrounding the microdroplets. A qualitative correlation was found between coalescence rates and interfacial viscosities; however, there appears to be no direct correlation with interfacial tension. New insight has been gained into the influence of emulsion stability in tertiary oil recovery by surfactant/polymer flooding in laboratory core tests. We concluded that those systems that result in relatively stable emulsions yield poor coalescence rates and, hence, poor oil recovery, Introduction The ability of the surfactant/polymer system to initiate and to propagate an oil bank is the single most important feature of a successful tertiary oil-recovery process. The mechanisms of oil-bank formation and development are yet unknown. It has been suggested that without the initiation of the oil bank, the process behaves more like the unstable injection of a surfactant solution alone, where the oil is produced by entrainment or emulsification in the flowing surfactant stream. In a laboratory study of the initial displacement of residual hydrocarbons by aqueous surfactant solutions, Childress and Schechter and Wade observed that those systems that spontaneously emulsified and coalesced rapidly yielded better oil recovery than those systems that spontaneously formed stable emulsions. Recently, Strange and Talash, Whitley and Ware, and Widmeyer et al. reported results of Salem (IL) low-tension, water-flood tests that used Witco TRS 10-80 TM petroleum sulfonate surfactant solution. They found stable oil-in-water emulsions at the observer well in addition to emulsion problems at the production well and reported that problems at the production well and reported that actual oil recovery was about one-quarter the target value. These studies clearly suggested that poor efficiency of oil recovery results from emulsion stability problems in the low-tension surfactant or micellar processes. Vinatieri presented results of experiments on the stability of crude-oil-in-water emulsions that coo be produced during a surfactant or micellar flood. More recently, we have assessed the rigidity of interfacial films and its relationship to coalescence rate through measurements of interfacial viscosities of crude oils contacted against aqueous solutions containing various concentrations of surfactants and other pertinent chemical additives. Our data clearly indicate that in the absence of a commercial surfactant, interfacial viscosity builds up rapidly, coalescence is inhibited, and the resulting emulsion is quite stable. These phenomena also have been observed by Gladden and Neustadter. Several studies were conducted on the structure of film-forming material at the crude oil/water interface, its effect on emulsion stability, and the role of such films in oil recovery by water or caustic solution displacements. Rigid films were found to reduce the amount of oil recovered. Our studies also have shown that the addition of a commercial surfactant lowered both the interfacial viscosity (ISV) and interfacial tension (IFT) of the crude oil-aqueous solution system. However, the concentration at which both the IFT and ISV are minimized cannot be identified by measuring IFT alone. We have conducted a cinephotomicrographic examination of spontaneous emulsification and a microvisual study of the displacement of residual crude oil by aqueous surfactant solutions in micromodel porous media. SPEJ P. 409


Author(s):  
Emmy Fatmi Budhya ◽  
Muhammad Taufiq Fathaddin ◽  
Sugiatmo Kasmungin

<em>Oil recovery may be increased by lowering interfacial tension between oil and water due to surfactant injection. Bagasse is one of the organic materials which has a fairly high lignin content, where lignin is the basic substance of making Natrium Lignosulfonate (NaLS) Surfactants. The research was divided into three sections. The first was experiment to produce lignin from bagasse. In this experiment 100 gram of bagasse with size of 60 mesh or 80 mesh extracted by benzene + ethanol (2:1) and then 20%, 50%, or 75% NaOH was added to activate lignin. The maximum amount of lignin produced was 24.88%. The second experiment was to produce NaLS surfactant from obtained lignin. FTIR equipment was used to verify the NaLS surfactant yielded using the method. The maximum amount of NaLS surfactant produced was 20.264% of bagasse mass. After that NaLS surfactant obtained from the previous process was used in chemical flooding experiment. In the experiments, the surfactant concentration in the solution was varied at 0.05%, 0.10%, 0.15%, and 1.00%. While temperature was set at 30°C, 40°C, 60°C, 70°C, or 80°C. The optimum condition happened when a solution with surfactant concentration of 1% was injected at 60°C. The recovery factor of oil using the condition was 0.47.</em>


Sign in / Sign up

Export Citation Format

Share Document