scholarly journals Evaporation of water droplets on photoresist surfaces – An experimental study of contact line pinning and evaporation residues

Author(s):  
Bojia He ◽  
Anton A. Darhuber
2015 ◽  
Vol 784 ◽  
pp. 465-486 ◽  
Author(s):  
Leonardo Espín ◽  
Satish Kumar

Wetting of permeable substrates by liquids is an important phenomenon in many natural and industrial processes. Substrate heterogeneities may significantly alter liquid spreading and interface shapes, which in turn may alter liquid imbibition. A new lubrication-theory-based model for droplet spreading on permeable substrates that incorporates surface roughness is developed in this work. The substrate is assumed to be saturated with liquid, and the contact-line region is described by including a precursor film and disjoining pressure. A novel boundary condition for liquid imbibition is applied that eliminates the need for a droplet-thickness-dependent substrate permeability that has been employed in previous models. A nonlinear evolution equation describing droplet height as a function of time and the radial coordinate is derived and then numerically solved to characterize the influence of substrate permeability and roughness on axisymmetric droplet spreading. Because it incorporates surface roughness, the new model is able to describe the contact-line pinning that has been observed in experiments but not captured by previous models.


2020 ◽  
Vol 1677 ◽  
pp. 012156
Author(s):  
N Sibiryakov ◽  
W Zheng ◽  
O Kabov ◽  
B Bai

Langmuir ◽  
2011 ◽  
Vol 27 (11) ◽  
pp. 6890-6896 ◽  
Author(s):  
Siang-Jie Hong ◽  
Feng-Ming Chang ◽  
Tung-He Chou ◽  
Seong Heng Chan ◽  
Yu-Jane Sheng ◽  
...  

2018 ◽  
Vol 122 (30) ◽  
pp. 17184-17189 ◽  
Author(s):  
Hongguang Zhang ◽  
Shan Chen ◽  
Zhenjiang Guo ◽  
Yawei Liu ◽  
Fernando Bresme ◽  
...  

2018 ◽  
Vol 9 (15) ◽  
pp. 4239-4244 ◽  
Author(s):  
David S. Bull ◽  
Nathaniel Nelson ◽  
Danielle Konetski ◽  
Christopher N. Bowman ◽  
Daniel K. Schwartz ◽  
...  

2019 ◽  
Vol 196 ◽  
pp. 00041
Author(s):  
Dmitry Kochkin ◽  
Valentin Belosludtsev ◽  
Veronica Sulyaeva

This paper is an experimental study of thermocapillary breakdown phenomenon in a horizontal film of liquid placed on a silicon nonisothermal substrate. With the help of a high-speed video camera the speed of the three-phase contact line was measured during the growth of a dry spot.


1995 ◽  
Vol 407 ◽  
Author(s):  
S. Kumar ◽  
M. O. Robbins ◽  
D. H. Reich

ABSTRACTWe have studied the dynamics of contact lines formed by water-alkane interfaces in capillaries with random surface disorder. We find that the contact-line velocity V scales with the applied capillary pressure P as V∼ (P – Pt)ζ over two decades in V. This is consistent with a critical depinning transition. We obtain this result by using a sensitive ac differential-pressure measurement technique to measure dP/dV. We find that dP/dV αV−0 8 (5) implying that 1/ζ = 0. 20 (5).


Sign in / Sign up

Export Citation Format

Share Document