radial coordinate
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 72)

H-INDEX

22
(FIVE YEARS 3)

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 124
Author(s):  
Alessandro Luchetti ◽  
Andrea Carollo ◽  
Luca Santoro ◽  
Matteo Nardello ◽  
Davide Brunelli ◽  
...  

<p class="Abstract">Nowadays, the importance of working in changing and unstructured environments such as logistics warehouses through the cooperation between Automated Guided Vehicles (AGV) and the operator is increasingly demanded. The challenge addressed in this article aims to solve two crucial functions of autonomy: operator identification, and tracking. These tasks are necessary to enable an AGV to follow the selected operator along his path. This paper presents an innovative, accurate, robust, autonomous, and low-cost operator real-time tracking system, leveraging the inherent complementarity of the uncertainty regions (2D ellipses) between ultra-wideband (UWB) transceivers and cameras. The test campaign shows how the UWB system has higher uncertainty in the angular direction. In contrast, in the case of the vision system, the uncertainty is predominant along the radial coordinate. Due to the nature of the data, a sensor fusion demonstrates improvement in the accuracy and goodness of the final tracking.</p>


Particles ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Bobur Turimov ◽  
Ahmadjon Abdujabbarov ◽  
Bobomurat Ahmedov ◽  
Zdeněk Stuchlík

An exact analytical, spherically symmetric, three-parametric wormhole solution has been found in the Einstein-scalar field theory, which covers the several well-known wormhole solutions. It is assumed that the scalar field is massless and depends on the radial coordinate only. The relation between the full contraction of the Ricci tensor and Ricci scalar has been found as RαβRαβ=R2. The derivation of the Einstein field equations have been explicitly shown, and the exact analytical solution has been found in terms of the three constants of integration. The several wormhole solutions have been extracted for the specific values of the parameters. In order to explore the physical meaning of the integration constants, the solution has been compared with the previously obtained results. The curvature scalar has been determined for all particular solutions. Finally, it is shown that the general solution describes naked singularity characterized by the mass, the scalar quantity and the throat.


2021 ◽  
Vol 64 (11) ◽  
pp. 815-824
Author(s):  
M. V. Temlyantsev ◽  
O. L. Bazaikina ◽  
E. N. Temlyantseva ◽  
V. Ya. Tsellermaer

A particular solution of a linear variant of the dynamic thermal elasticity problem is considered in application to modeling the conditions of surface hardening of metal products by an energy pulse. The authors determined the equation of medium motion with the model of temperature pulse tested earlier for compatibility with special cases of the equations of parabolic and hyperbolic thermal conductivity. The problem of loading a flat plane of a short circular cylinder (disk) with a temperature pulse is presented. Pulse is a consequence of adopted structure of the volumetric power density of the heat flux, the time multiplier of which has the form of a single wave of the Heaviside function. Classical thermoelastic displacement potential and the method of its division into the product of independent variables functions were used to construct the thermal stress tensor. Differential equations for multiplier functions and their general solutions were found. Natural boundary conditions were set for the components of thermal stress tensor, and their tasks were solved. The obtained solutions are in the form of segments of functional series (the Bessel function in radial coordinate and the exponential function in axial coordinate). The article considers a numerical example of loading a disk made of 40KhN steel which has the mechanical properties sensitive to temperature treatment. Maple computer mathematics package was used in the calculations. Approximate solutions take into account the first 24 terms of the functional series. Estimation of the example makes it possible to explain the presence of stress peaks and stress intensity as a consequence of mutually inverse processes of temperature stress growth and reduction of elasticity coefficients with temperature rise. The numerical example warns against relying only on estimates of solutions to thermoelasticity problems without taking into account the plastic and viscous properties of the material.


2021 ◽  
Vol 16 (12) ◽  
pp. T12011
Author(s):  
Z. Fan ◽  
L. Xie ◽  
Y. Mo ◽  
F. Lin ◽  
T. Hu ◽  
...  

Abstract The collection efficiency of the hemispherical internal cell of radon monitors depends on many factors, with the distribution of the electric field and the relative humidity of the air being particularly important. COMSOL is used to simulate an internal cell with a plastic upper surface. Simulation results show a relatively uniform gradient of the electric field. Assuming that the electric field felt by the positively charged Po-218 ions in the internal cell is a linear function of its radial coordinate, a mathematical model of the collection efficiency is proposed. From this model, we obtained the following: 1) under the same neutralization rate and potential, the electric field gradient has little effect on the collection efficiency; 2) under the same neutralization rate, the collection efficiency increases with the potential on the cell wall. If the neutralization rate is small, then the potential value for the maximum collection efficiency is also small. At a relative humidity of 6%–10%, the collection efficiency saturates for values of the electric potential on the cell wall larger than 5 kV; 3) under the same potential, a large neutralization rate corresponds to reduced collection efficiency. At high potential, the collection efficiency is relatively less affected by the neutralization rate. Higher collection efficiency can be achieved under high potential and low humidity conditions. This study provides a theoretical foundation to design the internal cell of radon monitor for improving the collection efficiency of Po-218.


Author(s):  
Guo Meng ◽  
Philip Lauber ◽  
Xin Wang ◽  
Zhixin Lu

Abstract In this work, the gyrokinetic eigenvalue code LIGKA, the drift-kinetic/MHD hybrid code HMGC and the gyrokinetic full-f code TRIMEG-GKX are employed to study the mode structure details of Reversed Shear Alfv\'en Eigenmodes (RSAEs). Using the parameters from an ASDEX-Upgrade plasma, a benchmark with the three different physical models for RSAE without and with Energetic Particles (EPs) is carried out. Reasonable agreement has been found for the mode frequency and the growth rate. Mode structure symmetry breaking (MSSB) is observed when EPs are included, due to the EPs' non-perturbative effects. It is found that the MSSB properties are featured by a finite radial wave phase velocity, and the linear mode structure can be well described by an analytical complex Gaussian expression $\Phi(s)=e^{- \sigma (s-s_0)^2}$ with complex parameters $\sigma$ and $s_0$, where $s$ is the normalized radial coordinate. The mode structure is distorted in opposite {manners} when the EP drive shifted from one side of $q_{min}$ to the other side, and specifically, a non-zero average radial wave number $\langle k_s\rangle$ with opposite signs is generated. The initial EP density profiles and the corresponding mode structures have been used as the input of HAGIS code to study the EP transport. The parallel velocity of EPs is generated in opposite directions, due to different values of the average radial wave number $\langle k_s\rangle$, corresponding to different initial EP density profiles with EP drive shifted away from the $q_{min}$.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 419
Author(s):  
Kirill A. Bronnikov ◽  
Pavel E. Kashargin ◽  
Sergey V. Sushkov

We consider the generalized Tolman solution of general relativity, describing the evolution of a spherical dust cloud in the presence of an external electric or magnetic field. The solution contains three arbitrary functions f(R), F(R) and τ0(R), where R is a radial coordinate in the comoving reference frame. The solution splits into three branches corresponding to hyperbolic (f>0), parabolic (f=0) and elliptic (f<0) types of motion. In such models, we study the possible existence of wormhole throats defined as spheres of minimum radius at a fixed time instant, and prove the existence of throats in the elliptic branch under certain conditions imposed on the arbitrary functions. It is further shown that the normal to a throat is a timelike vector (except for the instant of maximum expansion, when this vector is null), hence a throat is in general located in a T-region of space-time. Thus, if such a dust cloud is placed between two empty (Reissner–Nordström or Schwarzschild) space-time regions, the whole configuration is a black hole rather than a wormhole. However, dust clouds with throats can be inscribed into closed isotropic cosmological models filled with dust to form wormholes which exist for a finite period of time and experience expansion and contraction together with the corresponding cosmology. Explicit examples and numerical estimates are presented. The possible traversability of wormhole-like evolving dust layers is established by a numerical study of radial null geodesics.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 449
Author(s):  
Massimo Santarsiero ◽  
Rosario Martínez-Herrero ◽  
Gemma Piquero ◽  
Juan Carlos González de Sande ◽  
Franco Gori

All pseudo-Schell model sources have been shown to possess the same continuous set of circularly symmetric modes, all of them presenting a conical wavefront. For keeping energy at a finite level, the mode amplitude along the radial coordinate is modulated by a decreasing exponential function. A peculiar property of such modes is that they exist in the Laplace transform’s realm. After a brief discussion of the near-zone, we pass to the far-zone, where the field can be evaluated in closed form. The corresponding features of the intensity distribution are discussed.


2021 ◽  
Vol 43 (3) ◽  
pp. 15-23
Author(s):  
N.М. Fialko ◽  
A.V. Nosovsksyi ◽  
S.O. Aleshko ◽  
I.L. Pioro ◽  
D.P. Khmil

The results of computer modeling of the spatial distribution of the specific heat capacity under condition of the upstream flow of supercritical water in vertical bare tubes are given. The features of the motion along the tube length the front of the pseudo-phase transition "pseudoliquid-pseudogas" are considered. The position of this front determines the location of the extremums of the specific heat capacity of water. The regularities of changes in the radial distributions of heat capacity along the length of the tube and longitudinal distributions for different values of the radial coordinate are investigated. The data of a comparative analysis of this distribution at various values of the specific heat flux supplied to the tube wall are presented


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 332
Author(s):  
Geová Alencar ◽  
Matheus Nilton

In this paper, we analyze the Schwarzschild-like wormhole in the Asymptotically Safe Gravity(ASG) scenario. The ASG corrections are implemented via renormalization group methods, which, as consequence, provides a new tensor Xμν as a source to improved field equations, and promotes the Newton’s constant into a running coupling constant. In particular, we check whether the radial energy conditions are satisfied and compare with the results obtained from the usual theory. We show that only in the particular case of the wormhole being asymptotically flat(Schwarzschild Wormholes) that the radial energy conditions are satisfied at the throat, depending on the chosen values for its radius r0. In contrast, in the general Schwarzschild-like case, there is no possibility of the energy conditions being satisfied nearby the throat, as in the usual case. After that, we calculate the radial state parameter, ω(r), in r0, in order to verify what type of cosmologic matter is allowed at the wormhole throat, and we show that in both cases there is the possibility of the presence of exotic matter, phantom or quintessence-like matter. Finally, we give the ω(r) solutions for all regions of space. Interestingly, we find that Schwarzschild-like Wormholes with excess of solid angle of the sphere in the asymptotic limit have the possibility of having non-exotic matter as source for certain values of the radial coordinate r. Furthermore, it was observed that quantum gravity corrections due the ASG necessarily imply regions with phantom-like matter, both for Schwarzschild and for Schwarzschild-like wormholes. This reinforces the supposition that a phantom fluid is always present for wormholes in this context.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1622
Author(s):  
Irina Radinschi ◽  
Theophanes Grammenos ◽  
Gargee Chakraborty ◽  
Surajit Chattopadhyay ◽  
Marius Mihai Cazacu

Energy-momentum localization for the four-dimensional static and spherically symmetric, regular Simpson–Visser black hole solution is studied by use of the Einstein and Møller energy-momentum complexes. According to the particular values of the parameter of the metric, the static Simpson–Visser solution can possibly describe the Schwarzschild black hole solution, a regular black hole solution with a one-way spacelike throat, a one-way wormhole solution with an extremal null throat, or a traversable wormhole solution of the Morris–Thorne type. In both prescriptions it is found that all the momenta vanish, and the energy distribution depends on the mass m, the radial coordinate r, and the parameter a of the Simpson–Visser metric. Several limiting cases of the results obtained are discussed, while the possibility of astrophysically relevant applications to gravitational lensing issues is pointed out.


Sign in / Sign up

Export Citation Format

Share Document