Symmetric electrophoretic light scattering for determination of the zeta potential of colloidal systems

Author(s):  
Guiqiong Huang ◽  
Bingquan Xu ◽  
Jian Qiu ◽  
Li Peng ◽  
Kaiqing Luo ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 290
Author(s):  
Yannic Ramaye ◽  
Marta Dabrio ◽  
Gert Roebben ◽  
Vikram Kestens

Zeta potential is frequently used to examine the colloidal stability of particles and macromolecules in liquids. Recently, it has been suggested that zeta potential can also play an important role for grouping and read-across of nanoforms in a regulatory context. Although the measurement of zeta potential is well established, only little information is reported on key metrological principles such as validation and measurement uncertainties. This contribution presents the results of an in-house validation of the commonly used electrophoretic light scattering (ELS) and the relatively new particle tracking analysis (PTA) methods. The performance characteristics were assessed by analyzing silica and polystyrene reference materials. The ELS and PTA methods are robust and have particle mass working ranges of 0.003 mg/kg to 30 g/kg and 0.03 mg/kg to 1.5 mg/kg, respectively. Despite different measurement principles, both methods exhibit similar uncertainties for repeatability (2%), intermediate precision (3%) and trueness (4%). These results confirm that the developed methods can accurately measure the zeta potential of silica and polystyrene particles and can be transferred to other laboratories that analyze similar types of samples. If direct implementation is impossible, the elaborated methodologies may serve as a guide to help laboratories validating their own methods.


Talanta ◽  
2019 ◽  
Vol 205 ◽  
pp. 120062 ◽  
Author(s):  
F. Varenne ◽  
J.-B. Coty ◽  
J. Botton ◽  
F.-X. Legrand ◽  
H. Hillaireau ◽  
...  

2019 ◽  
Vol 33 (2) ◽  
pp. 37-41 ◽  
Author(s):  
Diefeng Gu ◽  
Sinan Yalcin ◽  
Helmut Baumgart ◽  
Shizhi Qian ◽  
Oktay Baysal ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 831
Author(s):  
Seungjun Lee ◽  
Jaehoo Lee ◽  
Nongmoon Hwang

The stable Y5O4F7 suspension for dense yttrium oxyfluoride (YOF) coating by suspension plasma spraying (SPS) was developed. Electrostatically and electrosterically stabilized aqueous Y5O4F7 suspensions were prepared and compared with a commercially available Y5O4F7 suspension without dispersant. The wettability and dispersibility of the Y5O4F7 suspensions were evaluated in terms of the zeta potential, average particle size, and size distribution with electrophoretic light scattering (ELS) and dynamic light scattering (DLS). The viscosity was measured and the sedimentation was tested to examine the fluidity and stability of the Y5O4F7 suspensions. When electrostatic (BYK-154) and electrosteric (BYK-199) dispersants were added to the Y5O4F7 suspension, the isoelectric point (IEP) of Y5O4F7 particles in the suspension shifted to lower pH. The zeta potential of both of electrostatically and electrosterically stabilized Y5O4F7 suspensions were higher than ±40 mV at pH of 8.6, respectively, which were much higher than of the Y5O4F7 suspension without dispersant. Meanwhile, the average particle size of the electrosterically stabilized Y5O4F7 suspension was much smaller than that of the electrostatically stabilized one. The electrosteric stabilization had a great effect on improving the wettability and dispersibility of the Y5O4F7 suspension. The coating rate of the electrosterically stabilized Y5O4F7 suspension was the highest among the three tested suspensions. In addition, the YOF coating deposited with the electrosterically stabilized Y5O4F7 suspension had the highest hardness and the lowest porosity.


Sign in / Sign up

Export Citation Format

Share Document