protein surface
Recently Published Documents


TOTAL DOCUMENTS

615
(FIVE YEARS 64)

H-INDEX

61
(FIVE YEARS 2)

Author(s):  
Shinji Takenaka ◽  
Airi Takada ◽  
Yukihiro Kimura ◽  
Masanori Watanabe ◽  
Ampin Kuntiya

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6976
Author(s):  
Petro Khoroshyy ◽  
Katalin Tenger ◽  
Rita V. Chertkova ◽  
Olga V. Bocharova ◽  
Mikhail P. Kirpichnikov ◽  
...  

Electron transfer within and between proteins is a fundamental biological phenomenon, in which efficiency depends on several physical parameters. We have engineered a number of horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived, low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments. The electronic coupling term and the reorganization energy for electron transfer in this system were estimated from temperature-dependent experiments and compared with calculated parameters using the crystal and the solution NMR structure of the protein. These results together with the observation of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting TUPS to the protein allows several shortcut routes for the electron involving through space jumps between the label and the protein surface.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Renukaradhya K. Math ◽  
Nagakumar Bharatham ◽  
Palaksha K. Javaregowda ◽  
Han Dae Yun

AbstractOur previous study on the binding activity between Cel5H and clay minerals showed highest binding efficiency among other cellulase enzymes cloned. Here, based on previous studies, we hypothesized that the positive amino acids on the surface of Cel5H protein may play an important role in binding to clay surfaces. To examine this, protein sequences of Bacillus licheniformis Cel5H (BlCel5H) and Paenibacillus polymyxa Cel5A (PpCel5A) were analyzed and then selected amino acids were mutated. These mutated proteins were investigated for binding activity and force measurement via atomic force microscopy (AFM). A total of seven amino acids which are only present in BlCel5H but not in PpCel5A were selected for mutational studies and the positive residues which are present in both were omitted. Of the seven selected surface lysine residues, only three mutants K196A(M2), K54A(M3) and K157T(M4) showed 12%, 7% and 8% less clay mineral binding ability, respectively compared with wild-type. The probable reason why other mutants did not show altered binding efficiency might be due to relative location of amino acids on the protein surface. Meanwhile, measurement of adhesion forces on mica sheets showed a well-defined maximum at 69 ± 19 pN for wild-type, 58 ± 19 pN for M2, 53 ± 19 pN for M3, and 49 ± 19 pN for M4 proteins. Hence, our results demonstrated that relative location of surface amino acids of Cel5H protein especially positive charged amino acids are important in the process of clay mineral-protein binding interaction through electrostatic exchange of charges.


mBio ◽  
2021 ◽  
Author(s):  
Nicole Eisenhuth ◽  
Tim Vellmer ◽  
Elisa T. Rauh ◽  
Falk Butter ◽  
Christian J. Janzen

Trypanosoma brucei is a unicellular parasite that causes devastating diseases like sleeping sickness in humans and the “nagana” disease in cattle in Africa. Fundamental to the establishment and prolongation of a trypanosome infection is the parasite's ability to escape the mammalian host's immune system by antigenic variation, which relies on periodic changes of a protein surface coat.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hiroshi Nakagawa ◽  
Taro Tamada

Protein hydration is crucial for the stability and molecular recognition of a protein. Water molecules form a hydration water network on a protein surface via hydrogen bonds. This study examined the hydration structure and hydrogen bonding state of a protein, staphylococcal nuclease, at various hydration levels in its crystalline state by all-atom molecular dynamics (MD) simulation. Hydrophilic residues were more hydrated than hydrophobic residues. As the water content increases, both types of residues were uniformly more hydrated. The number of hydrogen bonds per single water asymptotically approaches 4, the same as bulk water. The distances and angles of hydrogen bonds in hydration water in the protein crystal were almost the same as those in the tetrahedral structure of bulk water regardless of the hydration level. The hydrogen bond structure of hydration water observed by MD simulations of the protein crystalline state was compared to the Hydrogen and Hydration Database for Biomolecule from experimental protein crystals.


2021 ◽  
Author(s):  
Hugo Schweke ◽  
Marie-Helene Mucchielli ◽  
Nicolas Chevrollier ◽  
Simon Gosset ◽  
Anne Lopes

Molecular cartography using two-dimensional (2D) representation of protein surfaces has been shown to be very promising for protein surface analysis. Here, we present SURFMAP, a free standalone and easy-to-use software that enables the fast and automated 2D projection of either predefined features of protein surface (i.e., electrostatic potential, Kyte-Doolittle hydrophobicity, stickiness, and surface relief) or any descriptor encoded in the temperature factor column of a PDB file. SURFMAP uses a pseudo-cylindrical sinusoidal "equal-area" projection that has the advantage of preserving the area measures. It provides the user with (i) 2D maps that enable the easy and visual analysis of protein surface features of interest and (ii) maps in a text file format allowing the fast and straightforward quantitative comparison of 2D maps of homologous proteins.


Author(s):  
Patricia Molina-Espeja ◽  
Alejandro Beltran-Nogal ◽  
Maria Alejandra Alfuzzi ◽  
Victor Guallar ◽  
Miguel Alcalde

Fungal unspecific peroxygenases (UPOs) are hybrid biocatalysts with peroxygenative activity that insert oxygen into non-activated compounds, while also possessing convergent peroxidative activity for one electron oxidation reactions. In several ligninolytic peroxidases, the site of peroxidative activity is associated with an oxidizable aromatic residue at the protein surface that connects to the buried heme domain through a long-range electron transfer (LRET) pathway. However, the peroxidative activity of these enzymes may also be initiated at the heme access channel. In this study, we examined the origin of the peroxidative activity of UPOs using an evolved secretion variant (PaDa-I mutant) from Agrocybe aegerita as our point of departure. After analyzing potential radical-forming aromatic residues at the PaDa-I surface by QM/MM, independent saturation mutagenesis libraries of Trp24, Tyr47, Tyr79, Tyr151, Tyr265, Tyr281, Tyr293 and Tyr325 were constructed and screened with both peroxidative and peroxygenative substrates. These mutant libraries were mostly inactive, with only a few functional clones detected, none of these showing marked differences in the peroxygenative and peroxidative activities. By contrast, when the flexible Gly314-Gly318 loop that is found at the outer entrance to the heme channel was subjected to combinatorial saturation mutagenesis and computational analysis, mutants with improved kinetics and a shift in the pH activity profile for peroxidative substrates were found, while they retained their kinetic values for peroxygenative substrates. This striking change was accompanied by a 4.5°C enhancement in kinetic thermostability despite the variants carried up to four consecutive mutations. Taken together, our study proves that the origin of the peroxidative activity in UPOs, unlike other ligninolytic peroxidases described to date, is not dependent on a LRET route from oxidizable residues at the protein surface, but rather it seems to be exclusively located at the heme access channel.


2021 ◽  
Vol 22 (17) ◽  
pp. 9350
Author(s):  
Aneta Panuszko ◽  
Maciej Pieloszczyk ◽  
Anna Kuffel ◽  
Karol Jacek ◽  
Karol A. Biernacki ◽  
...  

The biology and chemistry of proteins and peptides are inextricably linked with water as the solvent. The reason for the high stability of some proteins or uncontrolled aggregation of others may be hidden in the properties of their hydration water. In this study, we investigated the effect of stabilizing osmolyte–TMAO (trimethylamine N-oxide) and destabilizing osmolyte–urea on hydration shells of two short peptides, NAGMA (N-acetyl-glycine-methylamide) and diglycine, by means of FTIR spectroscopy and molecular dynamics simulations. We isolated the spectroscopic share of water molecules that are simultaneously under the influence of peptide and osmolyte and determined the structural and energetic properties of these water molecules. Our experimental and computational results revealed that the changes in the structure of water around peptides, caused by the presence of stabilizing or destabilizing osmolyte, are significantly different for both NAGMA and diglycine. The main factor determining the influence of osmolytes on peptides is the structural-energetic similarity of their hydration spheres. We showed that the chosen peptides can serve as models for various fragments of the protein surface: NAGMA for the protein backbone and diglycine for the protein surface with polar side chains.


Sign in / Sign up

Export Citation Format

Share Document