Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles

2016 ◽  
Vol 145 ◽  
pp. 597-606 ◽  
Author(s):  
Tingting Yang ◽  
Shi Qian ◽  
Yuqing Qiao ◽  
Xuanyong Liu
2019 ◽  
Vol 13 (3) ◽  
pp. 256-264 ◽  
Author(s):  
Mehdi Rostami rad ◽  
Hossein Kazemian ◽  
Fateme Yazdani ◽  
Mohammad Reza Zand Monfared ◽  
Hoseinali Rahdar ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3854
Author(s):  
Joanna Czechowska ◽  
Ewelina Cichoń ◽  
Anna Belcarz ◽  
Anna Ślósarczyk ◽  
Aneta Zima

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.


2016 ◽  
Vol 7 ◽  
Author(s):  
Jason N. Payne ◽  
Hitesh K. Waghwani ◽  
Michael G. Connor ◽  
William Hamilton ◽  
Sarah Tockstein ◽  
...  

2021 ◽  
Vol 12 (3) ◽  
pp. 035003
Author(s):  
Nidhishree M Suchak ◽  
Prachi H Desai ◽  
M P Deshpande ◽  
S H Chaki ◽  
Swati J Pandya ◽  
...  

2019 ◽  
Vol 27 (2) ◽  
pp. 283-292 ◽  
Author(s):  
Haliza Katas ◽  
Chei Sin Lim ◽  
Ahmad Yasser Hamdi Nor Azlan ◽  
Fhataheya Buang ◽  
Mohd Fauzi Mh Busra

Author(s):  
Is Fatimah ◽  
Putwi Widya Citradewi ◽  
Amri Yahya ◽  
Bambang Nugroho ◽  
Habibi Hidayat ◽  
...  

Abstract The composite of green synthesized gold nanoparticles (Au NPs)-doped hydroxyapatite (HA) has been prepared. The gold nanoparticles were produced via bioreduction of HAuCl4 with Clitoria ternatea flower extract, and utilized in the synthesis of hydroxyapatite using Ca(OH)2 and ammonium diphosphate as precursor. The aim of this research is to study the structural analysis of the composite and antibacterial activity test toward Eschericia coli, Staphylococcus aureus, Klebsiela pneumoniae, and Streptococcus pyogenes. In addition, the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. The monitoring of gold nanoparticles formation was conducted by UV–vis spectroscopy and particle size analyses, meanwhile the synthesized composite was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that homogeneously dispersed gold nanoparticles in HA structure was obtained with the particle size ranging at 5-80 nm. The nanocomposite demonstrated antibacterial activity against tested bacteria. The nanocomposite expressed an antioxidant activity as shown by the DPPH scavenging activity of 66 and 58% at the concentration of 100 μg/mL and 50 μg/mL, respectively.


2020 ◽  
Vol 4 (2) ◽  

Metal nanoparticles possess an extensive scientific and technological significance due to their unique physiochemical properties and their potential applications in different fields like medicine. Silver and gold nanoparticles have shown to have antibacterial and cytotoxic activities. Conventional methods used in the synthesis of the metal nanoparticles involve use of toxic chemicals making them unsuitable for use in medical field. In our continued effort to explore for simple and eco-friendly methods to synthesize the metal nanoparticles, we here describe synthesis and characterization of gold and silver nanoparticles using Gonaderma lucidum, wild non-edible medicinal mushroom. G. lucidum mushroom contain bioactive compounds which can be involved in the reduction, capping and stabilization of the nanoparticles. Antibacterial activity analysis was done on E. coli and S. aureus. The synthesis was done on ultrasonic bath. Characterization of the metal nanoparticles was done by UV-VIS., High Resolution Transmission Electron Microscope (HRTEM) and FTIR. HRTEM analysis showed that both silver and gold nanoparticles were spherical in shape with an average size of 15.82±3.69 nm for silver and 24.73±5.124nm for gold nanoparticles (AuNPs). FTIR analysis showed OH and -C=C- stretching vibrations, an indication of presence of functional groups of biomolecules capping both gold and silver nanoparticles. AgNPs showed inhibition zones of 15.5±0.09mm and 13.3±0.14mm while AuNPs had inhibition zones of 14.510±0.35 and 13.3±0.50mm on E. coli and S. aureus respectively. The findings indicate the potential use of AgNPs and AuNPs in development of drugs in management of pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document