Study on the laminar burning velocity of ethanol/RP-3 aviation kerosene premixed flame

2022 ◽  
Vol 238 ◽  
pp. 111921
Author(s):  
Yu Liu ◽  
Wu Gu ◽  
Jinduo Wang ◽  
Dawei Rao ◽  
Xiaoxiao Chen ◽  
...  
Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122081
Author(s):  
Yu Liu ◽  
Wu Gu ◽  
Jinduo Wang ◽  
Hongan Ma ◽  
Nanhang Dong ◽  
...  

Fuel ◽  
2021 ◽  
Vol 289 ◽  
pp. 119761
Author(s):  
Yu Liu ◽  
Jinduo Wang ◽  
Wu Gu ◽  
Hongan Ma ◽  
Wen Zeng

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2138
Author(s):  
Wojciech Rudy ◽  
Andrzej Pekalski ◽  
Dmitriy Makarov ◽  
Andrzej Teodorczyk ◽  
Vladimir Molkov

In this paper the multi-phenomena deflagration model is used to simulate deflagrative combustion of several fuel–air mixtures in various scale closed vessels. The experimental transient pressure of methane–air, ethane–air, and propane–air deflagrations in vessels of volume 0.02 m3, 1 m3, and 6 m3 were simulated. The model includes key mechanisms affecting propagation of premixed flame front: the dependence of laminar burning velocity of concentration, pressure, and temperature; the effect of preferential diffusion in the corrugated flame front or leading point concept; turbulence generated by flame front itself or Karlovitz turbulence; increase of the flame front area with flame radius by fractals; and turbulence in the unburned mixture. Laminar velocity dependence on concentration, pressure, and temperature were calculated using CANTERA software. Various scale and geometry of used vessels induces various combustion mechanism. Simulations allow insight into the dominating mechanism. The model demonstrated an acceptable predictive capability for a variety of fuels and vessel sizes.


2015 ◽  
Vol 40 (2) ◽  
pp. 1203-1211 ◽  
Author(s):  
W.B. Weng ◽  
Z.H. Wang ◽  
Y. He ◽  
R. Whiddon ◽  
Y.J. Zhou ◽  
...  

Author(s):  
D S-K Ting ◽  
M. D. Checkel

The effects of laminar burning velocity, turbulence intensity, flame size and eddy size on the turbulent burning velocity of a premixed growing flame were experimentally separated in a 125 mm cubical chamber with lean methane-air mixtures spark ignited at 1 atm and 300 K. The turbulence was up to 2 m/s with 1 to 4 mm Taylor microscale. For the near unity Lewis number and near zero Markstein number mixture considered here, the turbulent burning velocity, St, can be approximated as: St = Sl + Cd(r/λ)u′, where Sl is the laminar burning velocity, r is the mean flame radius, λ is the Taylor microscale, u′ is the root mean square (r.m.s.) turbulence intensity and Cd is a constant of the order 0.02.


2014 ◽  
Vol 39 (17) ◽  
pp. 9534-9544 ◽  
Author(s):  
Yong He ◽  
Zhihua Wang ◽  
Wubin Weng ◽  
Yanqun Zhu ◽  
Junhu Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document