Extended higher-order multi-phase-field model for three-dimensional anisotropic-grain-growth simulations

2016 ◽  
Vol 120 ◽  
pp. 77-83 ◽  
Author(s):  
Eisuke Miyoshi ◽  
Tomohiro Takaki
2007 ◽  
Vol 558-559 ◽  
pp. 1177-1181 ◽  
Author(s):  
Philippe Schaffnit ◽  
Markus Apel ◽  
Ingo Steinbach

The kinetics and topology of ideal grain growth were simulated using the phase-field model. Large scale phase-field simulations were carried out where ten thousands grains evolved into a few hundreds without allowing coalescence of grains. The implementation was first validated in two-dimensions by checking the conformance with square-root evolution of the average grain size and the von Neumann-Mullins law. Afterwards three-dimensional simulations were performed which also showed fair agreement with the law describing the evolution of the mean grain size against time and with the results of S. Hilgenfeld et al. in 'An Accurate von Neumann's Law for Three-Dimensional Foams', Phys. Rev. Letters, 86(12)/2685, March 2001. Finally the steady state grain size distribution was investigated and compared to the Hillert theory.


2001 ◽  
Vol 677 ◽  
Author(s):  
Ingo Steinbach ◽  
Markus Apel

ABSTRACTThe kinetics of grain growth in multicrystalline materials is determined by the interplay of curvature driven grain boundary motion and interfacial stress balance at the vertices of the grain boundaries. A comprehensive way to treat both effects in one model is given by the time dependent Ginzburg Landau model or phase field model. The paper presents the application of a multi phase field model, recently developed for solidification processes to grain growth of a multicrystalline structure. The specific feature of this multi phase field model is its ability to treat each grain boundary with its individual characteristics dependent on the type of the grain boundary, its orientation or the local pinning at precipitates. The pinning effect is simulated on the nanometer scale resolving the interaction of an individual precipitate with a curved grain boundary. From these simulations an effective pinning force is deduced and a model of driving force dependent grain boundary mobility is formulated accounting for the pinning effect on the mesoscopic scale of the grain growth simulation. 2-D grain growth simulations are presented.


2008 ◽  
Vol 57 (8) ◽  
pp. 5290
Author(s):  
Yang Yu-Juan ◽  
Wang Jin-Cheng ◽  
Zhang Yu-Xiang ◽  
Zhu Yao-Chan ◽  
Yang Gen-Cang

Sign in / Sign up

Export Citation Format

Share Document