A human-phantom coupling experiment and a dispersive simulation model for investigating the variation of dielectric properties of biological tissues

2015 ◽  
Vol 61 ◽  
pp. 144-149 ◽  
Author(s):  
Jose Gomez-Tames ◽  
Yuto Fukuhara ◽  
Siyu He ◽  
Kazuyuki Saito ◽  
Koichi Ito ◽  
...  
Author(s):  
Irina L. Alborova ◽  
Julian Bonello ◽  
Lourdes Farrugia ◽  
Charles V. Sammut ◽  
Lesya N. Anishchenko

2017 ◽  
Vol 24 (5) ◽  
pp. 3290-3301 ◽  
Author(s):  
Emily Porter ◽  
Alessandra La Gioia ◽  
Adam Santorelli ◽  
Martin O'Halloran

2020 ◽  
Author(s):  
Iman Farhat ◽  
Raffaele Persico ◽  
Lourdes Farrugia ◽  
Charles Sammut

<p>This contribution presents a method of multi-length transmission lines, filled with or embedded in the material under test (MUT), based on time domain reflectometry (TDR), to measure the dispersion law of a nonmagnetic material. This approach is essential and can be exploited in both radiofrequency and microwave applications. The proposed technique expands on studies presented in [1-2], where dielectric, magnetic and conductive losses are accounted for by the complex relative permittivity and permeability of the MUT.</p><p>Many materials of interest in geophysical [3-4] and biomedical [5-6] applications are non-magnetic but preliminary measurements with the proposed technique can help to determine if the MUT indeed has magnetic properties. Moreover, it is shown that establishing the non-magnetic nature of the MUT constitutes meaningful a-priori information that allows disambiguating experimental results, even with limited data in the frequency range of interest.</p><p>Results relative to two different types of multi-length measurement data, namely data acquired by considering different lengths of a TDR probe entirely embedded in (or embedding) the MUT and data achieved from a sequential progressive embedding of the probe in the MUT (or, vice-versa, of the MUT in the probe) are presented to illustrate the method. The pros and cons of presented cases are also discussed.  </p><p><strong>Acknowledgements</strong></p><p>This work is supported by the European Cost Action “Mywave” CA17115.</p><p><strong>References</strong></p><p>[1] R. Persico, M. Pieraccini, Measurement of dielectric and magnetic properties of Materials by means of a TDR probe, Near Surface Geophysics, vol. 16, n.2, pp.1-9, DOI:10.3997/1873-0604.2017046, 2018.</p><p>[2] R. Persico, I. Farhat, L. Farrugia, S. d’Amico, C. Sammut, An innovative use of TDR probes: First numerical validations with a coaxial cable, Journal of Environmental & Engineering Geophysics, doi.org/10.2113/JEEG23.4.437, 23 (4): 437-442, 2018.</p><p>[3] R. Pierri, G. Leone, F. Soldovieri, R. Persico, "Electromagnetic inversion for subsurface applications under the distorted Born approximation" Nuovo Cimento, vol. 24C, N. 2, pp 245-261, March-April 2001.</p><p>[4] R. Persico, M. Ciminale, L. Matera, A new reconfigurable stepped frequency GPR system, possibilities and issues; applications to two different Cultural Heritage Resources, Near Surface Geophysics, vol. 12, n. 6, pp. 793-801 (doi: 10.3997/1873-0604.2014035), December 2014.</p><p>[5] R. Pethig, "Dielectric Properties of Biological Materials: Biophysical and Medical Applications," in IEEE Transactions on Electrical Insulation, vol. EI-19, no. 5, pp. 453-474, Oct. 1984.<br>doi: 10.1109/TEI.1984.298769</p><p> [6] C. Gabriel, S. Gabriel and E Corthout, “The dielectric properties of biological tissues: I. Literature survey,” Physics in Medicine and Biology, vol. 41, no. 11, pp. 2231-2249, Nov. 1996.</p>


Author(s):  
Saqib Salahuddin ◽  
Alessandra La Gioia ◽  
Muhammad Adnan Elahi ◽  
Emily Porter ◽  
Martin O'Halloran ◽  
...  

1988 ◽  
Vol 124 ◽  
Author(s):  
Magdy F. Iskander

ABSTRACTThe feasibility of using electromagnetic (EM) energy in industrial, medical, or in biological applications relies heavily on accurate knowledge of the dielectric properties of materials and on detailed understanding of the underlying interaction mechanisms. This chapter deals with the medical and biological applications of EM radiation. It therefore starts with a brief review of the dielectric properties of various tissues and a description of some of the basic interaction mechanisms. The techniques used to measure these properties are of particular interest to the microwave processing of materials research. Therefore, some of the time- and frequency-domain measurements methods of the dielectric properties of materials are discussed.Available techniques for calculating and measuring the absorption of EM radiation by humans and other biological models are also described. The impact of the obtained EM dosimetry results on modifying the ANSI Safety Standard is outlined. It will be noted that many of the dosimetric measurements procedures are highly relevant to experiences in the microwave processing of materials research.In addition, some of the medical applications in both the diagnostics and therapeutic areas are described. These applications basically exploit some of the unique dielectric characteristics of biological tissues. Specifically, noninvasive and interstitial EM hyperthermia techniques for cancer treatment are discussed, and other potential microwave methods for medical diagnostics are briefly reviewed. Future research needs to further the understanding of the various interaction mechanisms of EM radiation with materials are outlined. Every effort is made to relate experiences in the medical and biological research areas to research in the microwave processing of materials.


Sign in / Sign up

Export Citation Format

Share Document