A study of the dielectric properties of biological tissues: Ex-vivo vs preserved samples

Author(s):  
Irina L. Alborova ◽  
Julian Bonello ◽  
Lourdes Farrugia ◽  
Charles V. Sammut ◽  
Lesya N. Anishchenko
Author(s):  
Saqib Salahuddin ◽  
Alessandra La Gioia ◽  
Muhammad Adnan Elahi ◽  
Emily Porter ◽  
Martin O'Halloran ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Abas Sabouni ◽  
Camerin Hahn ◽  
Sima Noghanian ◽  
Edward Sauter ◽  
Tim Weiland

This paper addresses the changes in the physical characteristics (temperature and water/blood content) of breast tissue under different physiological conditions. We examined ex vivo specimens of breast tissue excised at the time of surgery to study the effects of physiological conditions on dielectric properties. We observed that the dielectric properties strongly depend on tissue physiological state. When the biological tissues undergo physiological changes, such as those due to disease or those induced by external changes such as variations in the environmental temperature, the microscopic processes deviate from their normal state and impact the overall dielectric properties. This suggests that microwave imaging might be used to monitor the physiological conditions of the body.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pranav Lanka ◽  
Kalloor Joseph Francis ◽  
Hindrik Kruit ◽  
Andrea Farina ◽  
Rinaldo Cubeddu ◽  
...  

AbstractAccurate monitoring of treatment is crucial in minimally-invasive radiofrequency ablation in oncology and cardiovascular disease. We investigated alterations in optical properties of ex-vivo bovine tissues of the liver, heart, muscle, and brain, undergoing the treatment. Time-domain diffuse optical spectroscopy was used, which enabled us to disentangle and quantify absorption and reduced scattering spectra. In addition to the well-known global (1) decrease in absorption, and (2) increase in reduced scattering, we uncovered new features based on sensitive detection of spectral changes. These absorption spectrum features are: (3) emergence of a peak around 840 nm, (4) redshift of the 760 nm deoxyhemoglobin peak, and (5) blueshift of the 970 nm water peak. Treatment temperatures above 100 °C led to (6) increased absorption at shorter wavelengths, and (7) further decrease in reduced scattering. This optical behavior provides new insights into tissue response to thermal treatment and sets the stage for optical monitoring of radiofrequency ablation.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 922
Author(s):  
William Querido ◽  
Shital Kandel ◽  
Nancy Pleshko

Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how “spectral fingerprints” can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.


2019 ◽  
Vol 12 (4) ◽  
pp. e201800333 ◽  
Author(s):  
Isa Carneiro ◽  
Sónia Carvalho ◽  
Rui Henrique ◽  
Luís M. Oliveira ◽  
Valery V. Tuchin

2021 ◽  
Vol 263 (1) ◽  
pp. 5552-5554
Author(s):  
Kim Deukha ◽  
Seongwook Jeon ◽  
Won June Lee ◽  
Junhong Park

Intraocular pressure (IOP) measurement is one of the basic tests performed in ophthalmology and is known to be an important risk factor for the development and progression of glaucoma. Measurement of IOP is important for assessing response to treatment and monitoring the progression of the disease in glaucoma. In this study, we investigate a method for measuring IOP using the characteristics of vibration propagation generated when the structure is in contact with the eyeball. The response was measured using an accelerometer and a force sensitive resistor to determine the correlation between the IOP. Experiment was performed using ex-vivo porcine eyes. To control the IOP, a needle of the infusion line connected with the water bottle was inserted into the porcine eyes through the limbus. A cross correlation analysis between the accelerometer and the force sensitive resistor was performed to derive a vibration factor that indicate the change in IOP. In order to analyze the degree of influence of biological tissues such as the eyelid, silicon was placed between the structure and the eyeball. The Long Short-Term Memory (LSTM) deep learning algorithm was used to predict IOP based on the vibration factor.


2020 ◽  
Vol 61 (11) ◽  
pp. 1480-1490
Author(s):  
Lin Lin ◽  
Adam H. Metherel ◽  
Mathieu Di Miceli ◽  
Zhen Liu ◽  
Cigdem Sahin ◽  
...  

N-acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO2-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO2 + microwave, or CO2 only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled (P < 0.05) following ischemia/hypercapnia (CO2 euthanization) and up to 12 times higher (P < 0.001) in the FAAH-KO compared with wild-type. THEA did not increase (P > 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased (P < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation.


Sign in / Sign up

Export Citation Format

Share Document