scholarly journals Dual purpose FWT domain spread spectrum image watermarking in real time

2009 ◽  
Vol 35 (2) ◽  
pp. 415-433 ◽  
Author(s):  
Santi P. Maity ◽  
Malay K. Kundu ◽  
Seba Maity
2011 ◽  
Vol 20 (11) ◽  
pp. 3207-3218 ◽  
Author(s):  
Fan Zhang ◽  
Wenyu Liu ◽  
Weisi Lin ◽  
King Ngi Ngan

Author(s):  
Bander Albarakati, Abdullah Basuhail, Gibrael Abo Samra Bander Albarakati, Abdullah Basuhail, Gibrael Abo Samra

This paper presents a new watermarking technique using hybrid image transforms that aims to be very robust against attacks. It also aims to reduce the amount of distortion created from embedding the watermark as much as possible, and have good capacity. The proposed system uses a hybrid watermarking technique that is based on Non-Subsampled Contourlet Transform and Discrete Wavelet Transform. In addition, the proposed system makes use of the fuzzy logic to automatically choose the strength of the embedded watermark. Furthermore, the system uses Spread Spectrum Code Division Multiple Access to embed and recover the watermark after transforming the image. To enhance recoverability of the watermarks, the system uses a high level of redundancy in the embedding process, which allows a powerful Error Correcting Code to be used in the recovery process. The fuzzy logic is used to help the system in producing watermarked images that reserve their quality and not be heavily altered after embedding the watermark. Experiments were performed to measure the quality of the proposed system using JPEG compression attacks. The results showed that the proposed system is robust and has good capacity and imperceptibly although it suffers from being computationally complex.


Author(s):  
Abdallah Soualmi ◽  
Lamri Laouamer ◽  
Adel Alti

In image watermarking, information is embedded in the original image for many reasons, such as ownership proofing, alteration detection, and/or fingerprinting, but it can also be used for real-time services such as e-payment, broadcast monitoring, and surveillance systems. For these, the data embedded must be extractable even if the image is manipulated intentionally or unintentionally. In contrast, robust techniques are the kind of watermarking that could assure the authenticity and protect the copyright. Many robust image watermarking approaches have been proposed in the last few years, and the purpose of this chapter is to provide a survey about recent relevant robust image watermarking methods existing in the literature.


Author(s):  
Alessandro Piva ◽  
Roberto Caldelli ◽  
Alessia De Rosa ◽  
Mauro Barni ◽  
Vito Cappellini

The need to safeguard the property rights of multimedia content from unauthorized copying and the possibility to determine the true owners of the asset can be faced by resorting to efficient digital watermarking systems. This chapter presents a mathematical formulation to define a digital watermarking system and describes the general requirements to be satisfied, with more emphasis given to the aspects of security, robustness, and imperceptibility. After this general discussion, the two main classes of digital watermarking schemes, namely the spread-spectrum watermarking and the side-informed watermarking are explained by highlighting their main advantages and drawbacks. This analysis is completed by the description of a practical implementation of a digital image watermarking scheme. Finally, the use of watermarking systems in the framework of a DRM is deeply analyzed.


Author(s):  
E. Tapanes

A proprietary fibre optic sensing technology has been developed and is capable of simultaneously utilising an existing fibre optic communication cable as an integrity-testing sensing cable, thus providing continuous, real-time monitoring of the fibre cable and any structure near the cable (ie., ground, tunnels, ducts, pipes, buildings, equipment, vessels, etc.). With this system, simultaneous fibre optic communications and real-time vibration monitoring was demonstrated using a wavelength multiplexed fibre system for a channel bandwidth of 500 MHz over 18 km of standard singlemode fibre. Real-time vibration monitoring was also demonstrated using standard singlemode and multimode fibre over lengths of 28 km and 53 km, respectively. Trials of the system are currently underway in Australia and the first commercial field installation with this capability is to be completed in mid-1998 in Indonesia. This paper highlights the benefits and potential of this dual-capacity system and details results obtained to-date.


Sign in / Sign up

Export Citation Format

Share Document