channel bandwidth
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 47)

H-INDEX

11
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 258
Author(s):  
Chongdeuk Lee

To provide high-quality streaming services in device-to-device (D2D) communications, performance parameters such as encoding rate, decoding rate, and flow rate should be detected and monitored. The proposed algorithm provides a method to detect time streaming for traffic flows in D2D communications, and a sequence to detect rate imbalance. This paper proposes a new FS-CDA (flow sensing-based congestion detecting algorithm) to prevent high congestion rates and assist an optimized D2D streaming service in 5G-based wireless mobile networks. The proposed algorithm detects and controls flow imbalance for streaming segments during D2D communications, and it includes operations such as transmission rate monitoring, rate adjustment functions, and underflow and overflow sensing for these operations. The paper aims to effectively control traffic flow rates caused by adjacent channel bandwidth, high bit rate error, and heterogeneous radio interference, and to enhance the performance of D2D streaming services by performing such operations. The proposed algorithm for D2D streaming services is measured by deriving the individual weight of certain versions of a streaming flow. Based on the given operations, the simulation results indicated that the proposed algorithm has better performance with respect to average congestion control ratio, PSNR, and average throughput than other methods.


2021 ◽  
Vol 1 (1) ◽  
pp. 83-93
Author(s):  
Noor N. Edan ◽  
Nasser N. Khamiss

In mobile communication systems bit-rate reductions while maintaining an acceptable voice quality are necessary to achieve efficiency in channel bandwidth utilization and users satisfaction. As Long-Term Evolution(LTE) converging towards all-IP solutions and supporting VOIP service, the voice signals are converted into coded digital bit-stream and sent over the network. This paper proposes the implementation of codebook excited linear prediction (CELP) voice codec algorithm based on two source-rates of low 9.6Kbps and medium 16Kbps for achieving a perceptible level of voice quality, while efficiently using available bandwidth during the transmission over advanced LTE. The architecture of proposed CELP codec model is implemented to decompose the voice signal into a set of parameters that characterize each particular frame at the encoder part, these parameters are quantized and encoded for transmission to the decoder. The investigation showed that the configuration of the link and the applied CELP codec mode mainly influence on the obtained voice capacity and quality. The quantifying also shows that the voice quality can be traded for the enhanced capacity, since the low rate codec will produce lower voice quality than higher rate codec. Also, this paper is achieved, during theconfiguration of the system with higher channel quality indicator (CQI) index, increasing in the capacity gain to a saturated value of about 500 and 1000 users per cell over 5MHz bandwidth for transmit diversity (TD) and Open-Loop Spatial Multiplexing (OLSM) respectively and up to 1000 and 2000 users per cell over 10MHz channel bandwidth for TD and OLSM respectively.


2021 ◽  
Vol 8 (11) ◽  
pp. 96-103
Author(s):  
Ali H. Alenezi ◽  

The acoustic telemetry used the drill string as a communication channel, which allows data transfer without interrupting drilling operations. This technology suffers from stop-bands that reduce the feasible bands for transmission up to 60 percent. The stop bands come due to the structure of the drill string constructed from pipes and tool joints. In this paper, we optimized the design of the drill string main components, which are pipes and tool-joints lengths, with an aim to increase the pass-bands total bandwidth. Using the verified drill string channel model, we proved that, with optimal lengths of pipes and tool joints, we can make the whole drill string channel bandwidth available for transmission. We also investigated the effect of small deviation from the optimal lengths on the channel transmission bands. The results showed that an increase of more than 138 percent in the available transmission bandwidths compared with standard drill string dimensions.


2021 ◽  
Vol 2094 (3) ◽  
pp. 032021
Author(s):  
V Prokofiev ◽  
O A Golyshevsky ◽  
A E Savochkin

Abstract Pulse-width modulation (PWM) signals used in various areas are sent to the receiver through a communications channel that distorts their waveform due to the limitations of the frequency range. It is not always possible to reduce additive (fluctuation) noises that are also present within the PWM signal to negligible levels. Limiting the range of frequencies transmitted over a communications channel results in both the deterioration of PWM signal front slopes and the changes in the spectral specifications of the fluctuation noise. The simulation of pulse signal formation helped identify a correlation between the pulse front slope and the number of harmonic components transmitted over the communications channel. Through the analysis, we established a correlation between pulse time and the additive noise parameters along with the bandwidth of the real communications channel. These calculations might be useful for problems where it is necessary to formulate the requirements for the communications channel transmitting the PWM signal.


2021 ◽  
Author(s):  
Naicheng Quan ◽  
Chunmin Zhang ◽  
Tingkui Mu ◽  
SiYuan li ◽  
Caiyin You

Author(s):  
Михаил Юрьевич Рытов ◽  
Руслан Юрьевич Калашников ◽  
Алексей Алексеевич Горелов

Концепция программно-конфигурируемых сетей (SDN) стремительно набирает популярность в управлении сетевой инфраструктурой центров обработки данных и операторов связи. К её ключевым функциям относятся мониторинг, детальное управление, гибкость и масштабируемость. Но вместе с тем, централизованное управление SDN делает его уязвимым для различных типов атак, таких как спуфинг и отказ в обслуживании (DoS). DoS-атаки оказывают наиболее серьезное воздействие, поскольку они снижают производительность сети из-за перегрузки ее различных компонентов, то есть контроллера, коммутатора и канала управления. Существующие подходы справляются с DoS-атаками в SDN либо путем отбрасывания вредоносных пакетов, либо путем объединения правил потока, что приводит к потерям легитимного трафика. Для уменьшения последствий DoS-атак в этой статье предлагается использование механизма многоуровневой справедливой очереди, который обеспечивает совместное использование ресурсов контроллера с несколькими уровнями очередей, которые могут динамически расширяться и агрегироваться в зависимости от загруженности сети. Предлагаемый подход оценивается путем сравнения его с базовым контроллером SDN. Результаты моделирования показывают, что предлагаемый подход увеличивает производительность SDN с точки зрения использования пропускной способности канала управления. The concept of Software Defined Networking (SDN) is rapidly gaining popularity in the management of the network infrastructure of data centers and telecom operators. Its key functions include monitoring, granular control, flexibility and scalability. But at the same time, the centralized management of SDN makes it vulnerable to various types of attacks, such as spoofing and denial of service (DoS). DoS attacks have the most serious impact because they degrade network performance by overloading various components such as the controller, switch, and control channel. Existing approaches deal with SDN DoS attacks either by dropping malicious packets or by combining flow rules, which leads to the loss of legitimate traffic. To mitigate the impact of DoS attacks, this article proposes the use of a tiered fair queuing mechanism, which allows the sharing of controller resources with multiple queue tiers that can dynamically expand and aggregate based on network congestion. The proposed approach is evaluated by comparing it to a basic SDN controller. Simulation results show that the proposed approach increases SDN performance in terms of control channel bandwidth utilization.


2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract In traditional optical communication, duplexity is achieved by using two fibers, each having a transmitter and a receiver. Economically, bidirectional wavelength division multiplexing (WDM) transmission systems utilizing a single fiber will be more attractive not only reducing the use of the fiber by a factor of two, but also the number of components. Duplex transmissions over a single fiber can double the capacity of an installed unidirectional link. The idea of this paper is to study another approach using the subcarrier multiplexing (SCM)-based optical network and evaluate the physical transmission quality of analog and digital signal using SCM approach and the characteristic of fiber nonlinear crosstalk such as stimulated Raman scattering, Cross phase modulation and four-wave mixing in the SCM externally modulation optical link. A suitable bandwidth of 890 – 950 MHz is selected for subcarriers and channel bandwidth of 200 KHz and carrier. By measuring the optical bit interference (OBI) performance limitations of the subcarrier multiplexing WDM optical transmission system is investigated. The OBI for 10 channels for input power 1 dB is -40 dB whereas for 110 channels the OBI is -20 dB separation of 250 KHz are considered.


2021 ◽  
Author(s):  
Yiwei Feng ◽  
Jing Ma ◽  
Xin Wang

Abstract The desire for sustainable development has led to the advancement of renewable energy generation through microgrids, and the control and stability of microgrids pose serious challenges to the popularization of microgrids. This article focuses on the stability and performance of the microgrid, and due to its limited channel bandwidth and other factors, may result in the loss of random packets from the sensor to the controller and from the controller to the actuator. To solve the problem, this paper designed a feedback controller based on the observer and robust H∞ control method and has established Bernoulli packet loss model. The proposed controller enables the networked control system robust exponential stability in the sense of mean square. Finally, the correctness and effectiveness of the proposed controller is verified by MATLAB simulation.


Sci ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 27
Author(s):  
Behnaz Majlesein ◽  
Asghar Gholami ◽  
Zabih Ghassemlooy

In underwater optical wireless communications (UOWC), scattering of the propagating light beam results in both intensity and phase variations, which limit the transmission link range and channel bandwidth, respectively. Scattering of photons while propagating through the channel is a random process, which results in the channel-dependent scattering noise. In this work, we introduce for the first time an analytical model for this noise and investigate its effect on the bit error rate performance of the UOWC system for three types of waters and a range of transmission link spans. We show that, for a short range of un-clear water or a longer range of clear water, the number of photons experiencing scattering is high, thus leading to the increased scattering noise. The results demonstrate that the FEC limit of 3×10−3 and considering the scattering noise, the maximum link spans are 51.5, 20, and 4.6 m for the clear, coastal, and harbor waters, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Halyna Beshley ◽  
Mykola Beshley ◽  
Mykhailo Medvetskyi ◽  
Julia Pyrih

In this paper, we consider the saturation problem in the 3GPP LTE cellular system caused by the expected huge number of machine-type communication (MTC) devices, leading to a significant impact on both machine-to-machine (M2M) and human-to-machine H2H traffic. M2M communications are expected to dominate traffic in LTE and beyond cellular networks. In order to address this problem, we proposed an advanced architecture designed for 5G LTE networks to enable the coexistence of H2H/M2M traffic, supported by different priority strategies to meet QoS for each traffic. The queuing strategy is implemented with an M2M gateway that manages four queues allocated to different types of MTC traffic. The optimal radio resource allocation method in LTE and beyond cellular networks was developed. This method is based on adaptive selection of channel bandwidth depending on the QoS requirements and priority traffic aggregation in the M2M gateway. Additionally, a new simulation model is proposed which can help in studying and analyzing the mutual impact between M2M and H2H traffic coexistence in 5G networks while considering high and low priority traffics for both M2M and H2H devices. This simulator automates the proposed method of optimal radio resource allocation between the M2M and H2H traffic to ensure the required QoS. Our simulation results proved that the proposed method improved the efficiency of radio resource utilization to 13% by optimizing the LTE frame formation process.


Sign in / Sign up

Export Citation Format

Share Document