Distribution network reliability enhancement and power loss reduction by optimal network reconfiguration

2021 ◽  
Vol 96 ◽  
pp. 107518
Author(s):  
Degarege Anteneh ◽  
Baseem Khan ◽  
Om Prakash Mahela ◽  
Hassan Haes Alhelou ◽  
Josep M. Guerrero
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6008
Author(s):  
Teketay Mulu Beza ◽  
Yen-Chih Huang ◽  
Cheng-Chien Kuo

The electrical distribution system has experienced a number of important changes due to the integration of distributed and renewable energy resources. Optimal integration of distributed generators (DGs) and distribution network reconfiguration (DNR) of the radial network have significant impacts on the power system. The main aim of this study is to optimize the power loss reduction and DG penetration level increment while keeping the voltage profile improvements with in the permissible limit. To do so, a hybrid of analytical approach and particle swarm optimization (PSO) are proposed. The proposed approach was tested on 33-bus and 69-bus distribution networks, and significant improvements in power loss reduction, DG penetration increment, and voltage profile were achieved. Compared with the base case scenario, power loss was reduced by 89.76% and the DG penetration level was increased by 81.59% in the 69-bus test system. Similarly, a power loss reduction of 82.13% and DG penetration level increment of 80.55% was attained for the 33-bus test system. The simulation results obtained are compared with other methods published in the literature.


10.29007/bngk ◽  
2018 ◽  
Author(s):  
Jaydeepsinh Sarvaiya ◽  
Mahipalsinh Chudasama

DG penetration is continuously increased across distribution network not only to reduce carbon emission, but also to enhance the performance of the distribution network. In a restructured environment any distribution utility need to address DG placement and sizing problem to find a cost effective solution for the specific investment. Most of the authors have attempted to solve the problem based on real power loss reduction across the network. Some authors consider voltage stability based analysis for increased loadability of network with real power loss. However, optimal reactive power compensation also need to be incorporated for a cost effective solution. In this paper an attempt has been made to address various types of DG and RPC units citing and sizing problem with multi-objectives consists real power loss reduction and VSI improvement. A new approach includes development of cost function to find cost-effective solution for distribution network. Evolutionary based Genetic Algorithm used to optimize the objective function. Proposed algorithm is tested onIEEE-33 bus radial distribution system.


Sign in / Sign up

Export Citation Format

Share Document