scholarly journals Optimization of sensor selection problem in IoT systems using opposition-based learning in many-objective evolutionary algorithms

2022 ◽  
Vol 97 ◽  
pp. 107625
Author(s):  
Irfan Younas ◽  
Ameera Naeem
Author(s):  
Hekmat Mohmmadzadeh

Selecting a feature in data mining is one of the most challenging and important activities in pattern recognition. The issue of feature selection is to find the most important subset of the main features in a specific domain, the main purpose of which is to remove additional or unrelated features and ultimately improve the accuracy of the categorization algorithms. As a result, the issue of feature selection can be considered as an optimization problem and to solve it, meta-innovative algorithms can be used. In this paper, a new hybrid model with a combination of whale optimization algorithms and flower pollination algorithms is presented to address the problem of feature selection based on the concept of opposition-based learning. In the proposed method, we tried to solve the problem of optimization of feature selection by using natural processes of whale optimization and flower pollination algorithms, and on the other hand, we used opposition-based learning method to ensure the convergence speed and accuracy of the proposed algorithm. In fact, in the proposed method, the whale optimization algorithm uses the bait siege process, bubble attack method and bait search, creates solutions in its search space and tries to improve the solutions to the feature selection problem, and along with this algorithm, Flower pollination algorithm with two national and local search processes improves the solution of the problem selection feature in contrasting solutions with the whale optimization algorithm. In fact, we used both search space solutions and contrasting search space solutions, all possible solutions to the feature selection problem. To evaluate the performance of the proposed algorithm, experiments are performed in two stages. In the first phase, experiments were performed on 10 sets of data selection features from the UCI data repository. In the second step, we tried to test the performance of the proposed algorithm by detecting spam emails. The results obtained from the first step show that the proposed algorithm, by running on 10 UCI data sets, has been able to be more successful in terms of average selection size and classification accuracy than other basic meta-heuristic algorithms. Also, the results obtained from the second step show that the proposed algorithm has been able to perform spam emails more accurately than other similar algorithms in terms of accuracy by detecting spam emails.


2019 ◽  
Vol 15 (3) ◽  
pp. 155014771983964
Author(s):  
De Zhang ◽  
Mingqiang Li ◽  
Feng Zhang ◽  
Maojun Fan

In this article, we consider the sensor selection problem of choosing [Formula: see text] sensors from a set of [Formula: see text] possible sensor measurements. The sensor selection problem is a combinational optimization problem. Evaluating the performance for each possible combination is impractical unless [Formula: see text] and [Formula: see text] are small. We relax the original selection problem to be a convex optimization problem and describe a projected gradient method with Barzilai–Borwein step size to solve the proposed relaxed problem. Numerical results demonstrate that the proposed algorithm converges faster than some classical algorithms. The solution obtained by the proposed algorithm is closer to the truth.


2019 ◽  
Vol 27 (4) ◽  
pp. 611-637
Author(s):  
Benoît Groz ◽  
Silviu Maniu

The hypervolume subset selection problem (HSSP) aims at approximating a set of [Formula: see text] multidimensional points in [Formula: see text] with an optimal subset of a given size. The size [Formula: see text] of the subset is a parameter of the problem, and an approximation is considered best when it maximizes the hypervolume indicator. This problem has proved popular in recent years as a procedure for multiobjective evolutionary algorithms. Efficient algorithms are known for planar points ([Formula: see text]), but there are hardly any results on HSSP in larger dimensions ([Formula: see text]). So far, most algorithms in higher dimensions essentially enumerate all possible subsets to determine the optimal one, and most of the effort has been directed toward improving the efficiency of hypervolume computation. We propose efficient algorithms for the selection problem in dimension 3 when either [Formula: see text] or [Formula: see text] is small, and extend our techniques to arbitrary dimensions for [Formula: see text].


2021 ◽  
Author(s):  
Linh Nguyen ◽  
Karthick Thiyagarajan ◽  
Nalika Ulapane ◽  
sarath kodagoda

The paper addresses the multimodal sensor selection problem where selected collocated sensor nodes are employed to effectively monitor and efficiently predict multiple spatial random fields. It is first proposed to exploit multivariate Gaussian processes (MGP) to model multiple spatial phenomena jointly. By the use of the Matern cross-covariance function, cross covariance matrices in the MGP model are sufficiently positive semi-definite, concomitantly providing efficient prediction of all multivariate processes at unmeasured locations. The multimodal sensor selection problem is then formulated and solved by an approximate algorithm with an aim to select the most informative sensor nodes so that prediction uncertainties at all the fields are minimized. The proposed approach was validated in the real-life experiments with promising results.


Author(s):  
Hekmat Mohmmadzadeh

Selecting a feature in data mining is one of the most challenging and important activities in pattern recognition. The issue of feature selection is to find the most important subset of the main features in a specific domain, the main purpose of which is to remove additional or unrelated features and ultimately improve the accuracy of the categorization algorithms. As a result, the issue of feature selection can be considered as an optimization problem and to solve it, meta-innovative algorithms can be used. In this paper, a new hybrid model with a combination of whale optimization algorithms and flower pollination algorithms is presented to address the problem of feature selection based on the concept of opposition-based learning. In the proposed method, we tried to solve the problem of optimization of feature selection by using natural processes of whale optimization and flower pollination algorithms, and on the other hand, we used opposition-based learning method to ensure the convergence speed and accuracy of the proposed algorithm. In fact, in the proposed method, the whale optimization algorithm uses the bait siege process, bubble attack method and bait search, creates solutions in its search space and tries to improve the solutions to the feature selection problem, and along with this algorithm, Flower pollination algorithm with two national and local search processes improves the solution of the problem selection feature in contrasting solutions with the whale optimization algorithm. In fact, we used both search space solutions and contrasting search space solutions, all possible solutions to the feature selection problem. To evaluate the performance of the proposed algorithm, experiments are performed in two stages. In the first phase, experiments were performed on 10 sets of data selection features from the UCI data repository. In the second step, we tried to test the performance of the proposed algorithm by detecting spam emails. The results obtained from the first step show that the proposed algorithm, by running on 10 UCI data sets, has been able to be more successful in terms of average selection size and classification accuracy than other basic meta-heuristic algorithms. Also, the results obtained from the second step show that the proposed algorithm has been able to perform spam emails more accurately than other similar algorithms in terms of accuracy by detecting spam emails.


Sign in / Sign up

Export Citation Format

Share Document