scholarly journals Simulating the entire progressive failure process of rock slopes using the combined finite-discrete element method

2022 ◽  
Vol 141 ◽  
pp. 104557
Author(s):  
Lei Sun ◽  
Quansheng Liu ◽  
Aly Abdelaziz ◽  
Xuhai Tang ◽  
Giovanni Grasselli
2021 ◽  
Vol 130 ◽  
pp. 79-93
Author(s):  
Yun Zheng ◽  
Runqing Wang ◽  
Congxin Chen ◽  
Chaoyi Sun ◽  
Zhanghao Ren ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-27
Author(s):  
Huaming An ◽  
Hongyuan Liu ◽  
Haoyu Han

A brief literature review of numerical studies on excavation damage zone (EDZ) is conducted to compare the main numerical methods on EDZ studies. A hybrid finite-discrete element method is then proposed to model the EDZ induced by blasts. During the excavation by blasts, the rock mass around the borehole is subjected to dynamic loads, i.e., strong shock waves crushing the adjacent rocks and high-pressure gas expanding cracks. Therefore, the hybrid finite-discrete element method takes into account the transition of the rock from continuum to discontinuum through fracture and fragmentation, the detonation-induced gas expansion and flow through the fractured rock, and the dependence of the rock fracture dynamic behaviour on the loading rates. After that, the hybrid finite-discrete element method is calibrated by modelling the rock failure process in the uniaxial compression strength (UCS) test and Brazilian tensile strength (BTS) test. Finally, the hybrid finite-discrete element method is used to model the excavation process in a deep tunnel. The hybrid finite-discrete element method successfully modelled the stress propagation and the fracture initiation and propagation induced by blasts. The main components of the EDZ are obtained and show good agreements with those well documented in the literature. The influences of the initial gas pressure, in situ stress, and spacing between boreholes are discussed. It is concluded that the hybrid finite-discrete element method is a valuable numerical tool for studying the EDZ induced by blasts in deep tunnels.


2020 ◽  
Author(s):  
Ali Besharatinezhad ◽  
Ákos Török ◽  
Mohammad Al-Tawalbeh ◽  
Miklós Kázmér

<p>The Eufrasius Cathedral of Poreč in Istria Peninsula, Croatia, was built in the 6th century, The nave collapsed in parts due to the AD 1440 earthquake. Nave and aisles are supported by 18 monolithic columns of Proconnesian marble. Seventeen of the columns bear various fractures, forming two groups: (1) axis-parallel fractures and (2) oblique fractures. Azimuths of dip directions of oblique fractures indicate N-S shaking.</p><p>In this study, the fracture development and cracking of a stone column was modelled using computer code. To model the current fracture pattern and to link it to seismic activity a Lagrangian analysis of continua in three dimensions (FLAC3D) is employed to reveal the non-linear behaviour of the stone column. A 3-Dimensional model based on discrete-element-method (DEM) has been created to study the failure process of the ancient stone column under static and dynamic loads. A combination of vertical and horizontal loads with a dynamic load due to the earthquake has been imposed horizontally. The influence of different parameters such as mechanical properties of rock, the magnitude of the earthquake were also assessed to observe their influence on the failure mechanism of rock. The DEM model was able to describe the observed crack pattern and it has proved the applicability of FLAC3D to describe failure mechanism of stone columns.</p>


Sign in / Sign up

Export Citation Format

Share Document