Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes

2008 ◽  
Vol 39 (3) ◽  
pp. 540-554 ◽  
Author(s):  
Zhihang Fan ◽  
Michael H. Santare ◽  
Suresh G. Advani
2013 ◽  
Vol 33 (3) ◽  
pp. 221-227
Author(s):  
Li Fang ◽  
Xuwu Li ◽  
Xiaodong Zhou

Abstract In this article, polypropylene (PP), short glass fiber-reinforced polypropylene (SFT-PP), and direct long glass fiber-reinforced polypropylene (DLFT-PP) interleaves were added as interleaves between fabrics during laminated molding to improve the interlaminar shear strength (ILSS). The test results showed that the ILSS was obviously improved. Furthermore, DLFT-PP interleaves were preheated to melt the PP before laminated molding and were then immediately placed between two fabrics to make the melted PP enter the gaps of the fabric and more fibers were used to further improve the ILSS. As expected, the ILSS increased.


2018 ◽  
Vol 52 (29) ◽  
pp. 4105-4116 ◽  
Author(s):  
Claude Nazair ◽  
Brahim Benmokrane ◽  
Marc-Antoine Loranger ◽  
Mathieu Robert ◽  
Allan Manalo

Cure ratio is a key property for the acceptance and use of glass fiber reinforced polymer bars in civil engineering infrastructure. Yet, there have been no reported studies investigating the effect of cure ratio on the physical, thermal, and mechanical properties of the fiber reinforced polymer bars. This paper presents an interlaboratory test program involving four laboratories to evaluate the cure ratio and glass transition temperature of glass fiber reinforced polymer bars from different production lots. The effect of cure ratio on the physical, mechanical, and microstructure of the glass fiber reinforced polymer bars was also evaluated. The results of this study show that the cure ratio significantly affected the glass transition temperature ( Tg) of the glass fiber reinforced polymer bars tested. The results also show that interlaminar shear strength of the glass fiber reinforced polymer bars was affected by the cure ratio but not the physical and tensile properties, microstructure, or chemical composition. The fully cured glass fiber reinforced polymer bars had interlaminar shear strength up to 8% higher than the partially cured bars. Nonetheless, the glass fiber reinforced polymer bars with a cure ratio of only 96% still had properties well above the minimum prescribed physical and mechanical properties for the reinforcing materials in concrete structures.


2009 ◽  
Vol 79-82 ◽  
pp. 1779-1782 ◽  
Author(s):  
Zhen Xing Kong ◽  
Ji Hui Wang

To examine the role of nanoclays in the enhancement of interlaminar shear strength (ILSS) of glass fiber reinforced diallyl phthalate (GFR-DAP) composites, the GFR-DAP laminates were manufactured by hand lay-up techniques using two nanoclays, DK2 and MHAB-MMT, respectively. Χ-ray diffraction (XRD) were conducted to characterize the morphology of the dispersed clay particles in the DAP matrix. The mechanical performances were characterized by flexural strength and LISS measurements. XRD scans shows that the clays disperse uniformly in the DAP matrix and form an intercalated structure with a basal spacing of 3.86 nm and 3.98 nm for DK2 and MHAB-MMT, respectively. Short beam shear tests show that only 2.5 wt% clay loading in DAP matrix increased the ILSS of resulting GFR-DAP laminates by 7.64% and 14.80% for DK2 and MHAB-MMT, respectively, with respect to the neat DAP. The fractured surfaces of resulting laminates were observed by scanning electron microscope (SEM).


Sign in / Sign up

Export Citation Format

Share Document