basal spacing
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 68)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 678
Author(s):  
Lianfei Kuang ◽  
Qiyin Zhu ◽  
Xiangyu Shang ◽  
Xiaodong Zhao

The knowledge of nanoscale mechanical properties of montmorillonite (MMT) with various compensation cations upon hydration is essential for many environmental engineering-related applications. This paper uses a Molecular Dynamics (MD) method to simulate nanoscale elastic properties of hydrated Na-, Cs-, and Ca-MMT with unconstrained system atoms. The variation of basal spacing of MMT shows step characteristics in the initial crystalline swelling stage followed by an approximately linear change in the subsequent osmotic swelling stage as the increasing of interlayer water content. The water content of MMT in the thermodynamic stable-state conditions during hydration is determined by comparing the immersion energy and hydration energy. Under this stable hydration state, the nanoscale elastic properties are further simulated by the constant strain method. Since the non-bonding strength between MMT lamellae is much lower than the boning strength within the mineral structure, the in-plane and out-of-plane strength of MMT has strong anisotropy. Simulated results including the stiffness tensor and linear elastic constants based on the assumption of orthotropic symmetry are all in good agreement with results from the literature. Furthermore, the out-of-plane stiffness tensor components of C33, C44, and C55 all fluctuate with the increase of interlayer water content, which is related to the formation of interlayer H-bonds and atom-free volume ratio. The in-plane stiffness tensor components C11, C22, and C12 decrease nonlinearly with the increase of water content, and these components are mainly controlled by the bonding strength of mineral atoms and the geometry of the hydrated MMT system. Young’s modulus in all three directions exhibits a nonlinear decrease with increasing water content.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 315
Author(s):  
Jiaqi Mao ◽  
Ying Zhou ◽  
Guanglie Lv ◽  
Renxian Zhou

Raw Ca-based montmorillonite (MMT) was treated by H2SO4, calcination and organic compounds (hexadecyltrimethyl ammonium bromide (HTAB), cetylpyridinium chloride (CPC) and chitosan (CTS)), respectively. The modified montmorillonites were characterized by different methods and their adsorption performances for three mycotoxins (Aflatoxin B1 (AFB1), zearalenone (ZEA) and deoxynivalenol (DON)) were evaluated at pH = 2.8 and 8.0, respectively. The results indicate that surfactants (CPC and HTAB) intercalation is the most efficient modification, which obviously improves the adsorption performance of montmorillonite for mycotoxins, with adsorption efficiency of above 90% for AFB1 and ZEA whether under acid or alkaline conditions, due to the increase in basal spacing and the improvement of hydrophobicity. Moreover, the adsorption efficiencies of AFB1 and ZEA over CPC-modified montmorillonite (CPC-AMMT-3) coexisting with vitamin B6 or lysine are still at a high level (all above 94%). All modified montmorillonites, however, have low adsorption efficiency for DON, with somewhat spherical molecular geometry.


Author(s):  
Agha Inya Inya ◽  
Ibezim-Ezeani Millicent Uzoamaka ◽  
Obi Chidi

Aims: Ogwuta clay from Unwana in the South Eastern part of Nigeria was modified by ion exchange reaction using hexadecyltrimethylammonium chloride (HDTMAC). Study Design: This study was analyzed experimentally and instrumentally. Place and Duration of Study: This study was carried out at the Department of Pure and Industrial Chemistry, Faculty of Science, University of Port Harcourt, Nigeria. The sample collection, literature search, experiment, results and analysis lasted for one and half years. Methodology: Physicochemical and thermal properties of the clay were determined after modification using classical and spectroscopic techniques. A combination of the wet and dry method (X-ray Fluorescence) was used to determine the metal oxide composition. Other techniques included; Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Thermogravimetry (TG). The Cation Exchange Capacity (CEC) was determined using the methylene blue method with a value of 16.4 meq/100g after modification. Results: The product was slightly acidic with pH 4.3. Silica (SiO2), alumina (Al2O3), Na+, and K+ were found to be 47.58 %, 18.99%, 2.27, and 0.23% respectively. The clay was limited in mineral impurities with 0.0% T4+, 0.41% Mg2+, and 0.11% Ca2+ but high in carbonaceous matter with loss on ignition (LOI) of 13.17%. A C-H asymmetric stretching was visible around the 2931.9 cm-1 region as revealed by the Fourier Transform Infra-Red analysis. The X-Ray Diffraction analysis of the modified clay showed a basal spacing of 8.121 Å. Also, the X-Ray Diffractogram revealed kaolinite as the major clay mineral with the presence of quartz and polygorskite. Conclusion: This study posits that the modified clay can be potentially suitable for the adsorptive removal of organic contaminants in aqueous and real life media.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4345
Author(s):  
Tuty Fareyhynn Mohammed Fitri ◽  
Azlin Fazlina Osman ◽  
Eid M. Alosime ◽  
Rahimah Othman ◽  
Fatimah Hashim ◽  
...  

Poly(ethylene-vinyl acetate) (PEVA) nanocomposite incorporating dual clay nanofiller (DCN) of surface modified montmorillonite (S-MMT) and bentonite (Bent) was studied for biomedical applications. In order to overcome agglomeration of the DCN, the S-MMT and Bent were subjected to a physical treatment prior to being mixed with the copolymer to form nanocomposite material. The S-MMT and Bent were physically treated to become S-MMT(P) and Bent(pH-s), respectively, that could be more readily dispersed in the copolymer matrix due to increments in their basal spacing and loosening of their tactoid structure. The biocompatibility of both nanofillers was assessed through a fibroblast cell cytotoxicity assay. The mechanical properties of the neat PEVA, PEVA nanocomposites, and PEVA-DCN nanocomposites were evaluated using a tensile test for determining the best S-MMT(P):Bent(pH-s) ratio. The results were supported by morphological studies by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Biostability evaluation of the samples was conducted by comparing the ambient tensile test data with the in vitro tensile test data (after being immersed in simulated body fluid at 37 °C for 3 months). The results were supported by surface degradation analysis. Our results indicate that the cytotoxicity level of both nanofillers reduced upon the physical treatment process, making them safe to be used in low concentration as dual nanofillers in the PEVA-DCN nanocomposite. The results of tensile testing, SEM, and TEM proved that the ratio of 4:1 (S-MMT(P):Bent(pH-s)) provides a greater enhancement in the mechanical properties of the PEVA matrix. The biostability assessment indicated that the PEVA-DCN nanocomposite can achieve much better retention in tensile strength after being subjected to the simulated physiological fluid for 3 months with less surface degradation effect. These findings signify the potential of the S-MMT(P)/Bent(pH-s) as a reinforcing DCN, with simultaneous function as biostabilizing agent to the PEVA copolymer for implant application.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3102
Author(s):  
Eva Plevová ◽  
Silvie Vallová ◽  
Lenka Vaculíková ◽  
Marianna Hundáková ◽  
Roman Gabor ◽  
...  

Diclofenac (DC) and ibuprofen (IBU) are widely prescribed non-steroidal anti-inflammatory drugs, the consumption of which has rapidly increased in recent years. The biodegradability of pharmaceuticals is negligible and their removal efficiency by wastewater treatment is very low. Therefore, the beidelitte (BEI) as unique nanomaterial was modified by the following different surfactants: cetylpyridinium (CP), benzalkonium (BA) and tetradecyltrimethylammonium (TD) bromides. Organobeidellites were tested as potential nanosorbents for analgesics. The organobeidellites were characterized using X-ray powder diffraction (XRD), Infrared spectroscopy (IR), Thermogravimetry and differential thermal analysis (TG/DTA) and scanning microscopy (SEM). The equilibrium concentrations of analgesics in solution were determined using UV-VIS spectroscopy. The intercalation of surfactants into BEI structure was confirmed both using XRD analysis due to an increase in basal spacing from 1.53 to 2.01 nm for BEI_BA and IR by decreasing in the intensities of bands related to the adsorbed water. SEM proved successful in the uploading of surfactants by a rougher and eroded organobeidellite surface. TG/DTA evaluated the decrease in dehydration/dehydroxylation temperatures due to higher hydrophobicity. The Sorption experiments demonstrated a sufficient sorption ability for IBU (55–86%) and an excellent ability for DC (over 90%). The maximum adsorption capacity was found for BEI_BA-DC (49.02 mg·g−1). The adsorption according to surfactant type follows the order BEI_BA > BEI_TD > BEI_CP.


2021 ◽  
Vol 14 (11) ◽  
pp. 1163
Author(s):  
Anand Mohan ◽  
Madhuri Girdhar ◽  
Raj Kumar ◽  
Harshil Chaturvedi ◽  
Agrataben Vadhel ◽  
...  

Bone-related diseases have been increasing worldwide, and several nanocomposites have been used to treat them. Among several nanocomposites, polyhydroxybutyrate (PHB)-based nanocomposites are widely used in drug delivery and tissue engineering due to their excellent biocompatibility and biodegradability. However, PHB use in bone tissue engineering is limited due to its inadequate physicochemical and mechanical properties. In the present work, we synthesized PHB-based nanocomposites using a nanoblend and nano-clay with modified montmorillonite (MMT) as a filler. MMT was modified using trimethyl stearyl ammonium (TMSA). Nanoblend and nano-clay were fabricated using the solvent-casting technique. Inspection of the composite structure revealed that the basal spacing of the polymeric matrix material was significantly altered depending on the loading percentage of organically modified montmorillonite (OMMT) nano-clay. The PHB/OMMT nanocomposite displayed enhanced thermal stability and upper working temperature upon heating as compared to the pristine polymer. The dispersed (OMMT) nano-clay assisted in the formation of pores on the surface of the polymer. The pore size was proportional to the weight percentage of OMMT. Further morphological analysis of these blends was carried out through FESEM. The obtained nanocomposites exhibited augmented properties over neat PHB and could have an abundance of applications in the industry and medicinal sectors. In particular, improved porosity, non-immunogenic nature, and strong biocompatibility suggest their effective application in bone tissue engineering. Thus, PHB/OMMT nanocomposites are a promising candidate for 3D organ printing, lab-on-a-chip scaffold engineering, and bone tissue engineering.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1211
Author(s):  
Anderson Parodia ◽  
Janaina A. Prasniski ◽  
Francine Bertella ◽  
Sibele B. C. Pergher

Pillared clays are interesting materials with applications in catalysis and adsorption processes. To obtain these materials, several preparation procedures are necessary and must be optimized to tune the final properties of the resulting pillared clay. Therefore, this article reports the influence of synthesis parameters (temperature and concentration) of Keggin-Al13 polycations and different intercalation times (0.5 up to 72 h) on the structural properties of Al-pillared clays. The natural clays are from Brazil, and they are composed mainly of montmorillonite. By XRD, N2 sorption, XRF and 27Al NMR results of the Al-PILCs, we verified that the pillaring solution could be prepared at room temperature with an aging time of 24 h. For the cation exchange process, a period of at least 2 h is necessary to ensure the formation of pillared materials. The concentration of the Keggin-Al13 polycations was evaluated by using diluted pillaring solutions followed by applying re-pillaring procedures. After submitting the pillared clay to another pillaring process, the number of pillars in the interlamellar space increased; however, the micropore volume decreased concomitantly. Thus, by optimizing the synthesis conditions of the Keggin-Al13 polycations, Al-PILCs could be obtained with good values of basal spacing and specific surface area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ma. F. Peralta ◽  
S. N. Mendieta ◽  
I. R. Scolari ◽  
G. E. Granero ◽  
M. E. Crivello

AbstractCarbamazepine (CBZ) was incorporated into layered double hydroxides (LDH) to be used as a controlled drug system in solid tumors. CBZ has a formal charge of zero, so its incorporation in the anionic clay implies a challenge. Aiming to overcome this problem, CBZ was loaded into LDH with sodium cholate (SC), a surfactant with negative charge and, for comparison, without SC by the reconstruction method. Surprisingly, it was found that both resultant nanocomposites had similar CBZ encapsulation efficiency, around 75%, and the LDH-CBZ system without SC showed a better performance in relation to the release kinetics of CBZ in simulated body fluid (pH 7.4) and acetate buffer simulating the cellular cytoplasm (pH 4.8) than the system with SC. The CBZ dimensions were measured with Chem3D and, according to the basal spacing obtained from X-ray patterns, it can be arranged in the LDH-CBZ system as a monolayer with the long axis parallel to the LDH layers. Fourier transform infrared spectroscopy and solid state NMR measurements confirmed the presence of the drug, and thermogravimetric analyses showed an enhanced thermal stability for CBZ. These results have interesting implications since they increase the spectrum of LDH application as a controlled drug system to a large number of nonionic drugs, without the addition of other components.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kaiwen Tong ◽  
Jianhua Guo ◽  
Shanxiong Chen ◽  
Fei Yu ◽  
Shichang Li ◽  
...  

Montmorillonite is the main mineral source for the swelling and shrinking of expansive soils. The macroscopic phenomena of soil are affected by the action of deep-level nanosized minerals. In order to illustrate the nanoscale mechanism from the molecular level, a combination of Monte Carlo and molecular dynamics was used to explore the swelling and shrinking characteristics of montmorillonite. The results showed that the basal spacing, free swelling ratio, and void ratio were positively correlated with water content but were inversely proportional to the change of CEC. The hysteresis phenomena of swelling and shrinking were the most significant at a water content of 40%. Compared with the expansive soil, the nanoscale shrinkage curve of montmorillonite also included three stages of normal shrinkage, residual shrinkage, and no shrinkage. The relative concentration of water molecules conveyed information such as the thickness and position of the hydration film and explained the difference in swelling and shrinking caused by the above variables. The changes in the number and length of hydrogen bonds revealed the order of formation and the process of destruction of hydrogen bonds during the reaction. The similarity of the trends between the basal spacing, binding energy, and the number of hydrogen bonds indicated that the swelling and shrinking of the crystal layer are a reflection of the molecular interaction, and the hydrogen bonding is particularly critical.


Sign in / Sign up

Export Citation Format

Share Document