Studies of hygrothermal degradation of a single fiber composite: An iterative approach with embedded optical sensors and numerical analysis

2014 ◽  
Vol 60 ◽  
pp. 577-585 ◽  
Author(s):  
M. Lai ◽  
J. Botsis ◽  
J. Cugnoni
2021 ◽  
Author(s):  
NITHIN K. PARAMBIL ◽  
BRANNDON R. CHEN ◽  
JOSEPH M. DEITZEL ◽  
JOHN W. GILLESPIE, JR. ◽  
LOAN T. VO ◽  
...  

A computational model of residual stress is developed for AS4/polypropylene composites and implemented via user material subroutine (UMAT) in ABAQUS. The main factors included in the model are the cooling-rate dependent crystallinity, temperature-dependent elastic modulus, and temperature-dependent coefficient of thermal expansion (CTE) of the matrix, and the temperature-independent transversely isotropic properties of the carbon fiber. Numerical results are generated for the case of a single fiber embedded in a thin film of polypropylene sample to replicate the process history and test configuration. During single fiber composite processing, a precalculated weight (tensile preload) is applied at the fiber ends to eliminate buckling/waviness of the carbon fiber induced by matrix shrinkage in the axial direction of the fiber. Experiments and Finite element (FE) analysis have been conducted with different preloads (1g, 4g, and 8g) at 25°C. Micro-Raman spectroscopy is utilized to validate the residual strain with different preloads at the bulk. The measured strain values show a good correlation with the predicted residual strain for various preload conditions.


2018 ◽  
Vol 58 (9) ◽  
pp. 1451-1467 ◽  
Author(s):  
I. Tabiai ◽  
R. Delorme ◽  
D. Therriault ◽  
M. Levesque

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Sri Hastuti ◽  
Catur Pramono ◽  
Yafi Akhmad

The Eichornia crassipes fiber have potentially as a composite reinforcing material. The advantage of composites with natural fibers like to light weight, corrosion resistance, water resistance, attractive performance, and without machining process. The purpose of using natural fiber as an alternative material to replace glass fiber composite material with Eichornia crassipes fibers are friendly and cheap. The research material used Eichornia crassipes fiber, NaOH, Etanol, and H2O. Processing of Eichornia crassipes fiber is washing with water, natural drying ± 10 days in eviromental, fiber taking with steel brush. Dry fibre were subjected to 10%, 20%, 30% NaOH and ethanol solution with variations of immersion time of 2, 4, 6 hours, neutralization with H20, and drying at room temperature. The Single fiber tensile test specimens were made with variations of treatment type in NaOH and Ethanol solution (10%, 20%, 30%), immersion time of 2, 4, and 6 hours. Single fiber test specimens refer to standard ASTM D 3379. Optimum tensile strength test results on NaOH treatment 20% variation of immersion time 4 hours: 28.402 N / mm2 and on ethanol treatment 20% variation of immersion time 2 hours: 48.197 N / mm2.


1995 ◽  
Vol 30 (5) ◽  
pp. 417-425 ◽  
Author(s):  
V. Kushnevsky ◽  
G. Wacker ◽  
A. Chate ◽  
A. K. Bledzki

Sign in / Sign up

Export Citation Format

Share Document