Robust free vibration analysis of functionally graded structures with interval uncertainties

2019 ◽  
Vol 159 ◽  
pp. 132-145 ◽  
Author(s):  
Di Wu ◽  
Qihan Wang ◽  
Airong Liu ◽  
Yuguo Yu ◽  
Zihua Zhang ◽  
...  
Author(s):  
Alireza Hassanzadeh Taheri ◽  
Mohammad Hossein Abolbashari ◽  
Behrooz Hassani

An improved methodology based on isogeometric analysis (IGA) approach is suggested to investigate the free vibration characteristics of functionally graded structures. The proposed method, which can be considered as an extension of the isogeometric analysis method to inhomogeneous elasticity, employs a fully isogeometric formulation for construction of the geometry, approximation of the solution as well as modelling the variations of material properties. The gradations of material properties are captured using the same NURBS basis functions employed for geometric and computational modelling by utilization of an interpolation technique. It will be seen that the proposed NURBS-based analysis method constitutes an efficient tool for studying integrated modelling and vibration analysis of functionally graded structures. Some numerical examples of 2D plane elasticity problems are presented and the effects of different types of unidirectional and bidirectional material profiles on dynamic characteristics of functionally graded structures are investigated. The obtained numerical results are verified with available exact elasticity solutions or the results of commercial finite element method software. It is shown that the difficulties encountered in free vibration analysis of functionally graded structures using the conventional finite element method are considerably circumvented by adopting the proposed procedure.


Author(s):  
V Kumar ◽  
SJ Singh ◽  
VH Saran ◽  
SP Harsha

The present paper investigates the free vibration analysis for functionally graded material plates of linearly varying thickness. A non-polynomial higher order shear deformation theory is used, which is based on inverse hyperbolic shape function for the tapered FGM plate. Three different types of material gradation laws, specifically: a power (P-FGM), exponential (E-FGM), and sigmoid law (S-FGM) are used to calculate the property variation in the thickness direction of FGM plate. The variational principle has been applied to derive the governing differential equation for the plates. Non-dimensional frequencies have been evaluated by considering the semi-analytical approach viz. Galerkin-Vlasov’s method. The accuracy of the preceding formulation has been validated through numerical examples consisting of constant thickness and tapered (variable thickness) plates. The findings obtained by this method are found to be in close agreement with the published results. Parametric studies are then explored for different geometric parameters like taper ratio and boundary conditions. It is deduced that the frequency parameter is maximum for S-FGM tapered plate as compared to E- and P-FGM tapered plate. Consequently, it is concluded that the S-FGM tapered plate is suitable for those engineering structures that are subjected to huge excitations to avoid resonance conditions. In addition, it is found that the taper ratio is significantly affected by the type of constraints on the edges of the tapered FGM plate. Some novel results for FGM plate with variable thickness are also computed that can be used as benchmark results for future reference.


Sign in / Sign up

Export Citation Format

Share Document