Progressive damage analysis of composite structures using higher-order layer-wise elements

2020 ◽  
Vol 190 ◽  
pp. 107921 ◽  
Author(s):  
M.H. Nagaraj ◽  
J. Reiner ◽  
R. Vaziri ◽  
E. Carrera ◽  
M. Petrolo
2021 ◽  
Author(s):  
MANISH H. NAGARAJ ◽  
ERASMO CARRERA ◽  
MARCO PETROLO

The objective of the current work is to develop a global-local framework for the progressive damage analysis of composite laminated structures. The technique involves two sequential analyses—an initial low-fidelity 3D-FE based linear analysis of the global structure, followed by the local nonlinear analysis of critical regions where damage is likely to occur. The numerical models used for the local analysis are developed using higher-order layer-wise structural theories obtained via the Carrera Unified Formulation. Composite damage is modelled using the CODAM2 model based on continuum damage mechanics, and the nonlinear problem is solved using explicit time integration schemes. Preliminary assessments are carried out to validate the proposed global-local framework by considering open-hole tensile specimens of quasi-isotropic composite laminates. Both full-scale CUF models and the proposed global-local approach are used to predict the tensile strength of the specimen. It is shown that the obtained results are in good agreement with experiment data, thus validating the framework, and a multi-fold improvement in computational time is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document