scholarly journals Extension of MITC to higher-order beam models and shear locking analysis for compact, thin-walled, and composite structures

2017 ◽  
Vol 112 (13) ◽  
pp. 1889-1908 ◽  
Author(s):  
E. Carrera ◽  
A. G. de Miguel ◽  
A. Pagani
Author(s):  
E. Carrera ◽  
A. Pagani ◽  
R. Augello

AbstractThe geometrical nonlinear effects caused by large displacements and rotations over the cross section of composite thin-walled structures are investigated in this work. The geometrical nonlinear equations are solved within the finite element method framework, adopting the Newton–Raphson scheme and an arc-length method. Inherently, to investigate cross-sectional nonlinear kinematics, low- to higher-order theories are employed by using the Carrera unified formulation, which provides a tool to generate refined theories of structures in a systematic manner. In particular, beams and shell-like laminated composite structures are analyzed using a layerwise approach, according to which each layer has its own independent kinematics. Different stacking sequences are analyzed, to highlight the influence of the cross-ply angle on the static responses. The results show that the geometrical nonlinear effects play a crucial role, mainly when higher-order theories are utilized.


2013 ◽  
Vol 95 ◽  
pp. 53-62 ◽  
Author(s):  
Diego Cárdenas ◽  
Hugo Elizalde ◽  
Piergiovanni Marzocca ◽  
Frank Abdi ◽  
Levon Minnetyan ◽  
...  

2000 ◽  
Author(s):  
Aditi Chattopadhyay ◽  
Dan Dragomir-Daescu

Abstract The presence of damage in structures made out of composite and/or piezoelectric materials can cause significant degradation in structural performance. In the present paper, damage indices based on two-dimensional gapped smoothing technique and model strains are developed in order to enhance the accuracy in predicting the location and extent of damage in composite structures. Structural analysis is performed based on a refined higher order theory, which can capture the transverse shear effects in anisotropic laminates. An approach using the developed damage indices and the laminate model of the higher order theory is employed to model and identify delaminations in composite laminates. It is also used in the delamination analysis of composite laminates with piezoelectric actuators. The proposed modal strain based damage indexes are used to perform delamination analysis. Comparison study is performed to illustrate that the reliability and robustness of the new proposed damage indices in locating delaminations in composite and smart composite structures. The effects on modal strain and damage indices due to the presence of surface bounded piezoelectric actuators are also presented and discussed.


2020 ◽  
Vol 190 ◽  
pp. 107921 ◽  
Author(s):  
M.H. Nagaraj ◽  
J. Reiner ◽  
R. Vaziri ◽  
E. Carrera ◽  
M. Petrolo

2018 ◽  
Vol 22 (7) ◽  
pp. 2302-2329
Author(s):  
Lan T That-Hoang ◽  
Hieu Nguyen-Van ◽  
Thanh Chau-Dinh ◽  
Chau Huynh-Van

This paper improves four-node quadrilateral plate elements by using cell-based strain smoothing enhancement and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of composite structures. Small strain-large displacement theory of von Kármán is used in nonlinear formulations of four-node quadrilateral plate elements that have strain components smoothed or averaged over the sub-domains of the elements. From the divergence theory, the displacement gradients in the smoothed strains are transformed from the area integral into the line one. The behavior of composite structures follows the third-order shear deformation theory. The solution of the nonlinear equilibrium equations is obtained by the iterative method of Newton–Raphson with the appropriate convergence criteria. The present numerical results are compared with the other numerical results available in the literature in order to demonstrate the effectiveness of the developed element. These results also contribute a better knowledge and understanding of nonlinear bending behaviors of these composite structures.


Sign in / Sign up

Export Citation Format

Share Document