A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation. Part II: Stiffness reduction in environment sensitive fibres under fatigue

2005 ◽  
Vol 65 (14) ◽  
pp. 2269-2275 ◽  
Author(s):  
J. Costa ◽  
A. Turon ◽  
D. Trias ◽  
N. Blanco ◽  
J.A. Mayugo
2021 ◽  
pp. 002199832098559
Author(s):  
Yun-Tao Zhu ◽  
Jun-Jiang Xiong ◽  
Chu-Yang Luo ◽  
Yi-Sen Du

This paper outlines progressive damage characteristics of screwed single-lap CFRPI-metal joints subjected to tensile loading at RT (room temperature) and 350°C. Quasi-static tensile tests were performed on screwed single-lap CCF300/AC721-30CrMnSiA joint at RT and 350°C, and the load versus displacement curve, strength and stiffness of joint were gauged and discussed. With due consideration of thermal-mechanical interaction and complex failure mechanism, a modified progressive damage model (PDM) based on the mixed failure criterion was devised to simulate progressive damage characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint, and simulations correlate well with experiments. By using the PDM, the effects of geometry dimensions on mechanical characteristics of screwed single-lap CCF300/AC721-30CrMnSiA joint were analyzed and discussed.


Author(s):  
P.A. Carraro ◽  
L. Maragoni ◽  
A.S. Paipetis ◽  
M. Quaresimin ◽  
L. Tzounis ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. 015028
Author(s):  
Yongqi Yang ◽  
Li Zhang ◽  
Licheng Guo ◽  
Suyang Zhong ◽  
Jiuzhou Zhao ◽  
...  

Author(s):  
Junjie Zhou ◽  
Shengnan Wang

In this paper, a progressive damage model for studying the dynamic mechanical response and damage development of composite laminates under low-velocity impact was established. The model applied the Hashin and Hou failure criteria to predict the initiation of intra-laminar damage (fiber and matrix damage); a linear degradation scheme combined with the equivalent displacement method was adopted to simulate the damage development; a cohesive zone model with the bilinear traction-separation relationship was used to predict delamination. A user material subroutine VUMAT was coded, and the simulation analysis of carbon fiber reinforcement composite laminates subjected to 25 J impact was performed via commercial software ABAQUS. The predicted impact force-time curve, impact force-displacement curve, and damage distribution contours among the layers were in a good agreement with the experimental, which verified the proposed model. According to the simulation results, the fiber damage and matrix damage were analyzed, and the expansion of delamination was discussed.


Sign in / Sign up

Export Citation Format

Share Document