The critical damage state controlling the tension-tension fatigue life of unidirectional fibre composites

2019 ◽  
Vol 172 ◽  
pp. 172-181 ◽  
Author(s):  
Bent F. Sørensen
Author(s):  
Ravi Pratap Singh Tomar ◽  
Furkan I. Ulu ◽  
Ajit Kelkar ◽  
Ram V. Mohan

Abstract The utilization of additively manufactured parts is gaining popularity in functional applications. Polymer-based additive manufacturing (AM) parts are utilized in a variety of engineering applications for automotive, aerospace, and energy. AM printed parts are however newer class of materials, and structural performance of these materials is not fully understood completely, and very limited exists currently on precisely performance of Polyjet printed parts and associated digital materials under fatigue loading. This paper investigates the stiffness degradation under tension-tension fatigue loading of digital polypropylene using homogenous 3-Dimensional test coupons formed using PolyJet printing. Homogeneous 3-Dimensional test configuration employed in the present study eliminates the process-induced limitations of traditional ASTM D638 2D fatigue test coupons for AM processed materials. Fatigue data is analyzed to present an empirical model of effective elastic modulus and an analytical model of the accumulated damage state, as defined on the basis of stiffness degradation during cyclic loading. Further, the actual damage accumulation due to cyclic loading with the predicted model is compared. Modeling of the S-N diagram provides a better estimation of fatigue life and fatigue life modeling of AM printed test coupons and is obtained via linear regression analysis of experimental data with high correlation coefficient R2 (0.9971). The analytical model of the accumulated damage state is based on the stiffness degradation and is derived from the regression analysis of experimental data of stiffness degradation at different loading percentages assuming a polynomial of degree 4. Present study provides insight into the fatigue damage state and cyclic performance of digital polypropylene from Polyjet printing.


Data in Brief ◽  
2019 ◽  
Vol 25 ◽  
pp. 104263
Author(s):  
D. Wilhelmsson ◽  
L.P. Mikkelsen ◽  
S. Fæster ◽  
L.E. Asp

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1030 ◽  
Author(s):  
Jarosław Szusta ◽  
Andrzej Seweryn

This article presents an approach related to the modeling of the fatigue life of constructional metal alloys working under elevated temperature conditions and in the high-amplitude load range. The article reviews the fatigue damage accumulation criteria that makes it possible to determine the number of loading cycles until damage occurs. Results of experimental tests conducted on various technical metal alloys made it possible to develop a fatigue damage accumulation model for the LCF (Low Cycle Fatigue) range. In modeling, the material’s damage state variable was defined, and the damage accumulation law was formulated incrementally so as to enable the analysis of the influence of loading history on the material’s fatigue life. In the proposed model, the increment of the damage state variable was made dependent on the increment of plastic strain, on the tensile stress value in the sample, and also on the actual value of the damage state variable. The model was verified on the basis of data obtained from experiments in the field of uniaxial and multiaxial loads. Samples made of EN AW 2024T3 aluminum alloy were used for this purpose.


Sign in / Sign up

Export Citation Format

Share Document