polyjet printing
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 11 (13) ◽  
pp. 6013
Author(s):  
Rebecca Jungbauer ◽  
Jonas Breunig ◽  
Alois Schmid ◽  
Mira Hüfner ◽  
Robert Kerberger ◽  
...  

The present study aimed to investigate the impact of hardness from 3D printed transfer trays and dental crowding on bracket bonding accuracy. Lower models (no crowding group: Little’s Irregularity Index (LII) < 3, crowding group: LII > 7, n = 10 per group) were selected at random, digitized, 3D printed, and utilized for semiautomated virtual positioning of brackets and tubes. Hard and soft transfer trays were fabricated with polyjet printing and digital light processing, respectively. Brackets and tubes were transferred to the 3D printed models and altogether digitized using intraoral scanning (IOS) and microcomputed tomography (micro-CT) for assessment of linear and angular deviations. Mean intra- and interrater reliability amounted to 0.67 ± 0.34/0.79 ± 0.16 for IOS, and 0.92 ± 0.05/0.92 ± 0.5 for the micro-CT measurements. Minor linear discrepancies were observed (median: 0.11 mm, Q1–Q3: −0.06–0.28 mm). Deviations in torque (median: 2.49°, Q1–Q3: 1.27–4.03°) were greater than angular ones (median: 1.81°, Q1–Q3: 1.05°–2.90°), higher for hard (median: 2.49°, Q1–Q3: 1.32–3.91°) compared to soft (median: 1.77°, Q1–Q3: 0.94–3.01°) trays (p < 0.001), and torque errors were more pronounced at crowded front teeth (p < 0.05). In conclusion, the clinician should carefully consider the potential impact of hardness and crowding on bracket transfer accuracy, specifically in torque and angular orientation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Furkan Ulu ◽  
Ravi Pratap Singh Tomar ◽  
Ram Mohan

Purpose PolyJet technology allows printing complex multi-material composite configurations using Voxel digital designs' capability, thus allowing rapid prototyping of 3D printed structural parts. This paper aims to investigate the processing and mechanical characteristics of composite material configurations formed from soft and hard materials with different distributions and sizes via voxel digital print design. Design/methodology/approach Voxels are extruded representations of pixels and represent different material information similar to each pixel representing colors in digital images. Each geometric region of a digitally designed part represented by a voxel can be printed with a different material. Multi-material composite part configurations were formed and rapidly prototyped using a PolyJet printer Stratasys J750. A design of experiments composite part configuration of a soft material (Tango Plus) within a hard material matrix (Vero Black) was studied. Composite structures with different hard and soft material distributions, but at the same volume fractions of hard and soft materials, were rapidly prototyped via PolyJet printing through developed Voxel digital printing designs. The tensile behavior of these formed composite material configurations was studied. Findings Processing and mechanical behavior characteristics depend on materials in different regions and their distributions. Tensile characterization obtained the fracture energy, tensile strength, modulus and failure strength of different hard-soft composite systems. Mechanical properties and behavior of all different composite material systems are compared. Practical implications Tensile characteristics correlate to digital voxel designs that play a critical role in additive manufacturing, in addition to the formed material composition and distributions. Originality/value Results clearly indicate that multi-material composite systems with various tensile mechanical properties could be created using voxel printing by engineering the design of material distributions, and sizes. The important parameters such as inclusion size and distribution can easily be controlled within all slices via voxel digital designs in PolyJet printing. Therefore, engineers and designers can manipulate entire morphology and material at each voxel level, and different prototype morphologies can be created with the same voxel digital design. In addition, difficulties from AM process with voxel printing for such material designs is addressed, and effective digital solutions were used for successful prototypes. Some of these difficulties are extra support material or printing the part with different dimension than it designed to achieve the final part dimension fidelity. Present work addressed and resolved such issued and provided cyber based software solutions using CAD and voxel discretization. All these increase broad adaptability of PolyJet AM in industry for prototyping and end-use.


2021 ◽  
Author(s):  
Patrick Coulson

<b>In recent years, soft robotics has gained wide interest in the research field and has also garnered some commercial success. This is because soft robots are comprised of soft materials that have inherent compliance which lends them to a wide variety of applications that are not suited to traditional hard-bodied robots. </b><p>Soft robots are generally created using a casting process, which comes with limitations to the geometry due to the removal of the cast body from the mould. This research seeks to enhance the capabilities of soft robotic limbs using multi-material Polyjet printing – a recently developed additive manufacturing technology – which allows for geometric freedom and variable materials within a singular soft 3D print which is not feasible using other fabrication methods. </p> <p>This research draws inspiration from natural mechanisms such as muscular hydrostats, to enable the exploration of singular channel soft robots that exhibit bending, twisting, elongation, and expansion all in one 3D print. The geometric freedom and variable materiality of the Stratasys J750 produce actuation results for each motion that cannot be easily replicated using traditional fabrication techniques. The printable materials of the Stratasys J750 were found to have tendencies to tear upon inflation, however, a large array of prints with complex geometry were able to successfully actuate despite this. In some areas, results outperformed actuators made using other fabrication techniques, as was particularly evident in the twisting actuators. Through fine-tuned parametric control with equation-driven modelling, this portfolio presents a method for soft robotic design and construction that can produce a limb with multiple motions and up to 5 axes of movement that can be tailored to specific pre-defined applications.</p>


2021 ◽  
Author(s):  
Patrick Coulson

<b>In recent years, soft robotics has gained wide interest in the research field and has also garnered some commercial success. This is because soft robots are comprised of soft materials that have inherent compliance which lends them to a wide variety of applications that are not suited to traditional hard-bodied robots. </b><p>Soft robots are generally created using a casting process, which comes with limitations to the geometry due to the removal of the cast body from the mould. This research seeks to enhance the capabilities of soft robotic limbs using multi-material Polyjet printing – a recently developed additive manufacturing technology – which allows for geometric freedom and variable materials within a singular soft 3D print which is not feasible using other fabrication methods. </p> <p>This research draws inspiration from natural mechanisms such as muscular hydrostats, to enable the exploration of singular channel soft robots that exhibit bending, twisting, elongation, and expansion all in one 3D print. The geometric freedom and variable materiality of the Stratasys J750 produce actuation results for each motion that cannot be easily replicated using traditional fabrication techniques. The printable materials of the Stratasys J750 were found to have tendencies to tear upon inflation, however, a large array of prints with complex geometry were able to successfully actuate despite this. In some areas, results outperformed actuators made using other fabrication techniques, as was particularly evident in the twisting actuators. Through fine-tuned parametric control with equation-driven modelling, this portfolio presents a method for soft robotic design and construction that can produce a limb with multiple motions and up to 5 axes of movement that can be tailored to specific pre-defined applications.</p>


Author(s):  
Ravi Pratap Singh Tomar ◽  
Furkan I. Ulu ◽  
Ajit Kelkar ◽  
Ram V. Mohan

Abstract The utilization of additively manufactured parts is gaining popularity in functional applications. Polymer-based additive manufacturing (AM) parts are utilized in a variety of engineering applications for automotive, aerospace, and energy. AM printed parts are however newer class of materials, and structural performance of these materials is not fully understood completely, and very limited exists currently on precisely performance of Polyjet printed parts and associated digital materials under fatigue loading. This paper investigates the stiffness degradation under tension-tension fatigue loading of digital polypropylene using homogenous 3-Dimensional test coupons formed using PolyJet printing. Homogeneous 3-Dimensional test configuration employed in the present study eliminates the process-induced limitations of traditional ASTM D638 2D fatigue test coupons for AM processed materials. Fatigue data is analyzed to present an empirical model of effective elastic modulus and an analytical model of the accumulated damage state, as defined on the basis of stiffness degradation during cyclic loading. Further, the actual damage accumulation due to cyclic loading with the predicted model is compared. Modeling of the S-N diagram provides a better estimation of fatigue life and fatigue life modeling of AM printed test coupons and is obtained via linear regression analysis of experimental data with high correlation coefficient R2 (0.9971). The analytical model of the accumulated damage state is based on the stiffness degradation and is derived from the regression analysis of experimental data of stiffness degradation at different loading percentages assuming a polynomial of degree 4. Present study provides insight into the fatigue damage state and cyclic performance of digital polypropylene from Polyjet printing.


2020 ◽  
Vol 22 ◽  
pp. 2934-2940
Author(s):  
N. Sathishkumar ◽  
Naren Vivekanandan ◽  
L.Balamurugan ◽  
N. Arunkumar ◽  
Ijaz Ahamed

Author(s):  
Furkan Ismail Ulu ◽  
Ram Mohan ◽  
Ravi Pratap Singh Tomar

Abstract PolyJet printing technology allows building polymeric materials with complex multi-material structures in the resolution of tens of microns layer thickness providing high control over the entire 3-D part. On the other hand, thermally conductive polymer/CNF nanocomposite materials offer new opportunities for replacing metals in industry and applications that require heat dissipation to avoid degradation of materials prematurely. CNFs are one of the best promising filler types to enhance thermal conductance of polymers. However, experimental thermal conductivities of polymer/CNF nanocomposites are significantly low compared to the intrinsic thermal conductivity of CNFs. Present work focused on selectively addition CNF fillers to form a thermally conductive path which helps to control dispersion and alignment. PolyJet printing forms the material and the structure simultaneously which allows the control over the material distribution and morphology on entire 3-D parts while providing possibilities to manipulate the design and create a conductive path. In the present research, improvement of thermal conductivity of Polymer/CNF nanocomposites via PolyJet printing using voxel digital printing method was investigated. Samples were designed as VeroClear material, VeroClear with CNFs, VeroCyan material, VeroCyan with CNFs. DSC and TPS were used to perform the thermal characterization of the samples.


Author(s):  
Ravi Pratap Singh Tomar ◽  
Furkan I. Ulu ◽  
Ajit Kelkar ◽  
Ram V. Mohan

Abstract The capability of additive manufacturing (AM) of making the monolithic, multi-material structure allow the fabrication of complex parts with varying mechanical properties. Many AM processes and equipment utilize proprietary material stocks from equipment vendors. A better understanding of the digital material mixing behavior to form traditional material configurations during AM is critical. Many jetting-based AM processes also have the capability to print different material gradient and build them layer by layer in a specific concentration of two or more base materials. This paper investigates the tensile strength and mechanical behavior of these digital materials formed by mixing or multi-material interfaces fabricated by material jetting. Further, due to the flexibility of orientating the digital design in AM, a part can be created in any orientation; however, processing-induced variation affects the performance of parts, as the way AM forms part is different from traditional manufacturing that leads to many artifacts. These artifacts affect the mechanical properties and behavior of final parts formed in AM. To eliminate the process-induced effect that exits in traditional 2D test coupon, this paper evaluates a homogenized 3D configuration test coupon which reduces the geometric effects in AM, that we had recently proposed and investigated.


Sign in / Sign up

Export Citation Format

Share Document