fibre break
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

2022 ◽  
pp. 002199832110619
Author(s):  
Sebastian Rosini ◽  
Mark N Mavrogordato ◽  
Tsuneo Takano ◽  
Naoki Sugiura ◽  
S Mark Spearing ◽  
...  

In situ synchrotron radiation computed tomography (SRCT) was used to compare the fibre damage progression in five configurations of (902/02)s carbon-epoxy coupons loaded to failure. The effects of different sizing types, surface treatments and fibre diameters on the macroscopic properties, for example, ultimate tensile strength (UTS), and on the damage accumulation at a microscopic scale, for example, fibre break accumulation, were assessed. A semi-automated approach was adopted to process the large amount of data obtained from the SRCT scans and further method applicability areas can be envisaged. Single fibre break accumulation was seen to be influenced by the fibre type, while the formation of interacting fibre break groups by the surface treatment and the sizing type. For the materials presented, it can be suggested that an increased defect tolerance can be obtained by moving from stronger to weaker fibre-matrix adhesion, with sub-critical multiplet behaviour emerging as independent of the average UTS value.


Author(s):  
A. Thionnet ◽  
A. R. Bunsell

Earlier work which successfully modelled the kinetics of fibre breakage in unidirectional composites under monotonic tensile loading has been extended to quantify the kinetics of fibre failure during both monotonic and sustained tensile loading. In both cases, failure was seen to occur when a critical density of large clusters (more than 16 fibres are broken within the representative volume element) of fibre breaks developed. However, in monotonic loading failure occurred very quickly after the first development of these large clusters, whereas under sustained loading the composite could accommodate greater levels of large clusters because of the lower applied load. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.


2014 ◽  
Vol 605 ◽  
pp. 303-305
Author(s):  
Jerome Rossignol ◽  
Alain Thionnet

In the field of the transport, the increase of the security rule recommends to a periodic control of the structure to detect damage due to mechanical loadings. Now, current materials, used in the case of transport applications, are the composite materials. The methods, to control these materials or composite structures, need to be low cost, non-destructive, in-situ and swiftness as far as possible. The scientific literature reports many methods to control the damage in composite materials and structures. However the above requirements and the adaptation to composite materials reduce the number of methods that can be used. Currently, the adapted methods are based on infrared thermography, acoustical emission, EMIR (ElectroMagnetic InfraRed) or microwave imagery. We present an innovative non-destructive method of detecting damages in composite materials. The method is based on the observation and analysis of the modification in dielectric material resulting from damage. The originality of this method is that the diagnostic is obtained by using a microstrip resonator at microwave frequencies. The feasibility of the method is demonstrated by the detection of a fibre break into an unidirectional composite submitted to a flexural loading. The fibre break is the damage to detect. The perspective of this work is to develop a quantification and a localization of damages.


Sign in / Sign up

Export Citation Format

Share Document