Concurrent topology optimization of cellular structures and anisotropic materials

2021 ◽  
Vol 255 ◽  
pp. 106624
Author(s):  
Yifu Lu ◽  
Liyong Tong
2019 ◽  
Vol 52 (9) ◽  
pp. 1598-1611 ◽  
Author(s):  
Xiaolei Yan ◽  
Qiwang Xu ◽  
Haiyan Hua ◽  
Dengfeng Huang ◽  
Xiaodong Huang

2019 ◽  
Vol 25 (9) ◽  
pp. 1482-1492
Author(s):  
Tong Wu ◽  
Andres Tovar

Purpose This paper aims to establish a multiscale topology optimization method for the optimal design of non-periodic, self-supporting cellular structures subjected to thermo-mechanical loads. The result is a hierarchically complex design that is thermally efficient, mechanically stable and suitable for additive manufacturing (AM). Design/methodology/approach The proposed method seeks to maximize thermo-mechanical performance at the macroscale in a conceptual design while obtaining maximum shear modulus for each unit cell at the mesoscale. Then, the macroscale performance is re-estimated, and the mesoscale design is updated until the macroscale performance is satisfied. Findings A two-dimensional Messerschmitt Bolkow Bolhm (MBB) beam withstanding thermo-mechanical load is presented to illustrate the proposed design method. Furthermore, the method is implemented to optimize a three-dimensional injection mold, which is successfully prototyped using 420 stainless steel infiltrated with bronze. Originality/value By developing a computationally efficient and manufacturing friendly inverse homogenization approach, the novel multiscale design could generate porous molds which can save up to 30 per cent material compared to their solid counterpart without decreasing thermo-mechanical performance. Practical implications This study is a useful tool for the designer in molding industries to reduce the cost of the injection mold and take full advantage of AM.


2021 ◽  
Author(s):  
Sina Rastegarzadeh ◽  
Jun Wang ◽  
Jida Huang

Abstract Advances in additive manufacturing enable the fabrication of complex structures with intricate geometric details. It also escalates the potential for high-resolution structure design. However, the increasingly finer design brings computational challenges for structural optimization approaches such as topology optimization (TO) since the number of variables to optimize increases with the resolutions. To address this issue, two-scale TO paves an avenue for high-resolution structural design. The design domain is first discretized to a coarse scale, and the material property distribution is optimized, then using micro-structures to fill each property field. In this paper, instead of finding optimal properties of two scales separately, we reformulate the two-scale TO problem and optimize the design variables concurrently in both scales. By introducing parameterized periodic cellular structures, the minimal surface level-parameter is defined as the material design parameter and is implemented directly in the optimization problem. A numerical homogenization method is employed to calculate the elasticity tensor of the cellular materials. The stiffness matrices of the cellular structures derived as a function of the level parameters, using the homogenization results. An additional constraint on the level parameter is introduced in the structural optimization framework to enhance adjacent cellulars interfaces’ compatibility. Based on the parameterized micro-structure, the optimization problem is solved concurrently with an iterative solver. The reliability of the proposed approach has been validated with different engineering design cases. Numerical results show a noticeable increase in structure stiffness using the level parameter directly in the optimization problem than the state-of-art mapping technique.


Sign in / Sign up

Export Citation Format

Share Document