Effect of stitching on Mode I strain energy release rate

2005 ◽  
Vol 69 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Gwo-Chung Tsai ◽  
Jun-Wei Chen
1994 ◽  
Vol 338 ◽  
Author(s):  
Edward O. Shaffer ◽  
Scott A. Sikorski ◽  
Frederick J. McGarry

ABSTRACTThe edge delamination test (EDT) is being developed to measure the critical energy required to cause a thin film, under biaxial tensile stress, to debond from a rigid substrate[1]. The test uses circular features etched through biaxially stressed films adhered to a rigid substrate. If the stress is large enough, a stable debond ring grows radially about the feature. We use a finite element analysis to model the test, solving for the applied strain energy release rate as a function of crack length, feature hole radius and other geometrical parameters. The model identifies both mode I and mode II components of the strain energy release rate, and agrees with previous analytical solutions for the total debond energy. However, the model predicts, with a very refined mesh at the crack tip, the fracture process is pure mode I. To explore this result, critical strain energy release rates from the EDT and the island blister test (IBT) are compared. This agreement supports the model prediction that the failure process in the EDT is modeI peeling.


2007 ◽  
Vol 555 ◽  
pp. 515-519 ◽  
Author(s):  
M.V. Gordić ◽  
I.M. Djordjević ◽  
D.R. Sekulić ◽  
Z.S. Petrović ◽  
M.M. Stevanović

The paper reports on an experimental study of the Mode I interlaminar fracture of unidirectional carbon fibers/epoxy resin composites. Mode I delamination strain energy release rate GIC was determined in double cantilever beam (DCB) test, before and after gamma irradiation at various doses. Glass transition temperature, Tg of epoxy matrix was determined from dynamic mechanical measurements. The delamination surfaces of tested coupons were observed by scanning electron microscopy. The variations in GIC values were correlated with irradiation doses, Tg values and the features of delamination microfractographs, as well as with the variation under irradiation of matrix or fibre/matrix dominated mechanical properties.


2015 ◽  
Vol 45 (3) ◽  
pp. 69-82
Author(s):  
V. Rizov

Abstract Static fracture in foam core sandwich structures under mixed mode I/II/III loading conditions was studied theoretically. In order to generate such loading conditions, a thread guide was used to impose in- plane displacements of the lower crack arm of a sandwich Split Cantilever Beam (SCB). The upper crack arm was loaded by a transverse force. A three-dimensional finite element model of the imposed displacement sandwich SCB configuration was developed. The fracture was studied applying the concepts of linear-elastic fracture mechanics. The strain energy release rate mode components distribution along the crack front was analyzed using the virtual crack closure technique. The influence of the imposed displacement magnitude and the crack length on the fracture was evaluated. The effect of the sandwich core material on the mixed-mode I/II/III fracture was studied. For this purpose, finite element simulations were carried-out assuming that the core is made by different rigid cellular foams. It was found that the strain energy release rate decreases when the foam density increases.


2021 ◽  
Vol 15 (56) ◽  
pp. 229-239
Author(s):  
Amina Mohamed Ben Ali ◽  
Salah Bouziane ◽  
Hamoudi Bouzerd

The use of composite materials is on the rise in different engineering fields, the main advantage of these materials for the aerospace industry is their low weight for excellent mechanical qualities. The analysis of failure modes, such as delamination, of these materials has received great attention from researchers. This paper proposes a method to evaluate the mode I Strain Energy Release Rate (SERR) of sandwich structures. This method associated a two-dimensional mixed finite element with virtual crack extension technique for the analysis of interfacial delamination of sandwich beams. A symmetrical Double Cantilever Beam (DCB) and asymmetrical Double Cantilever Beam (UDCB) have been analyzed in this study.  The comparison of the results obtained by this method and those found in the literature shows efficiency and good precision for the calculation of Strain Energy Release Rate (SERR).


Sign in / Sign up

Export Citation Format

Share Document