The Effect of High-Temperature Degradation on the Mode I Critical Strain Energy Release Rate of a Graphite/Epoxy Composite

1995 ◽  
Vol 17 (3) ◽  
pp. 228 ◽  
Author(s):  
WS Johnson ◽  
JE Masters ◽  
TF Walsh ◽  
CE Bakis
2021 ◽  
Author(s):  
Omar Rodríguez ◽  
Ali Matinmanesh ◽  
Sunjeev Phull ◽  
Emil H. Schemitsch ◽  
Paul Zalzal ◽  
...  

Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate’s (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex.


2021 ◽  
Author(s):  
Omar Rodríguez ◽  
Ali Matinmanesh ◽  
Sunjeev Phull ◽  
Emil H. Schemitsch ◽  
Paul Zalzal ◽  
...  

Silica-based and borate-based glass series, with increasing amounts of TiO2 incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate’s (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO2 in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO2 to the glass structure enhances its toughness, while decreasing its bulk hardness. Borate-based glass BRT3, with 15 mol % TiO2 incorporated, exhibits superior properties overall compared to the other proposed glasses in this work, as well as 45S5 Bioglass® and Pyrex.


1994 ◽  
Vol 338 ◽  
Author(s):  
Edward O. Shaffer ◽  
Scott A. Sikorski ◽  
Frederick J. McGarry

ABSTRACTThe edge delamination test (EDT) is being developed to measure the critical energy required to cause a thin film, under biaxial tensile stress, to debond from a rigid substrate[1]. The test uses circular features etched through biaxially stressed films adhered to a rigid substrate. If the stress is large enough, a stable debond ring grows radially about the feature. We use a finite element analysis to model the test, solving for the applied strain energy release rate as a function of crack length, feature hole radius and other geometrical parameters. The model identifies both mode I and mode II components of the strain energy release rate, and agrees with previous analytical solutions for the total debond energy. However, the model predicts, with a very refined mesh at the crack tip, the fracture process is pure mode I. To explore this result, critical strain energy release rates from the EDT and the island blister test (IBT) are compared. This agreement supports the model prediction that the failure process in the EDT is modeI peeling.


Sign in / Sign up

Export Citation Format

Share Document