critical strain
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 47)

H-INDEX

25
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 634
Author(s):  
Katarzyna Łyczkowska ◽  
Janusz Adamiec

The creep-resistant casting nickel alloys (e.g., Inconel 713C) belong to the group of difficult-to-weld materials that are using for precise element production; e.g., aircraft engines. In precision castings composed of these alloys, some surface defects can be observed, especially in the form of surface discontinuities. These defects disqualify the castings for use. In this paper, the results of technological tests of remelting and surfacing by the Tungsten Inert Gas method (TIG) in an argon shield and TecLine 8910 gas mixture are presented for stationary parts of aircraft engines cast from Inconel 713C alloy. Based on the results of metallographic studies, it was found that the main problem during remelting and pad welding of Inconel 713C castings was the appearance of hot microcracks. This type of defect was initiated in the partial melting zone, and propagated to the heat affected zone (HAZ) subsequently. The transvarestraint test was performed to determine the hot-cracking criteria. The results of these tests indicated that under the conditions of variable deformation during the remelting and pad welding process, the high-temperature brittleness range (HTBR) was equal 246 °C, and it was between 1053 °C and 1299 °C. In this range, the Inconel 713C was prone to hot cracking. The maximum deformation for which the material was resistant to hot cracking was equal to 0.3%. The critical strain speed (CSS) of 1.71 1/s, and the critical strain rate for temperature drop (CST), which in this case was 0.0055 1/°C, should be used as a criteria for assessing the tendency for hot cracking of the Inconel 713C alloy in the HTBR. The developed technological guidelines and hot-cracking criteria can be used to repair Inconel 713C precision castings or modify their surfaces using welding processes.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 595
Author(s):  
Petr Kawulok ◽  
Petr Opěla ◽  
Ivo Schindler ◽  
Rostislav Kawulok ◽  
Stanislav Rusz ◽  
...  

The hot deformation behavior of selected non-alloyed carbon steels was investigated by isothermal continuous uniaxial compression tests. Based on the analysis of experimentally determined flow stress curves, material constants suitable for predicting peak flow stress σp, peak strain εp and critical strain εcrDRX necessary to induce dynamic recrystallization and the corresponding critical flow stresses σcrDRX were determined. The validity of the predicted critical strains εcrDRX was then experimentally verified. Fine dynamically recrystallized grains, which formed at the boundaries of the original austenitic grains, were detected in the microstructure of additionally deformed specimens from low-carbon investigated steels. Furthermore, equations describing with perfect accuracy a simple linear dependence of the critical strain εcrDRX on peak strain εp were derived for all investigated steels. The determined hot deformation activation energy Q decreased with increasing carbon content (also with increasing carbon equivalent value) in all investigated steels. A logarithmic equation described this dependency with reasonable accuracy. Individual flow stress curves of the investigated steels were mathematically described using the Cingara and McQueen model, while the predicted flow stresses showed excellent accuracy, especially in the strains ranging from 0 to εp.


Author(s):  
Jun Xing ◽  
Hanlin Ding ◽  
Guohui Zhu ◽  
Fan Li ◽  
Junliang Li

Abstract The critical strain for dynamic recrystallization (DRX) is most important in designing rolling schedules for the refinement of grain size by boundary-induced transformation mechanisms. Modeling of the critical strain for DRX from the stress-strain curves obtained from hot compression was physically built in this paper. The stress-strain behaviour of materials during hot deformation should be a combination of work-hardening and recrystallization softening. Before DRX occurred, the stress-strain behaviours could be described by a constitutive equation in which basic strain hardening and the effect of strain rate and temperature on stress-strain behaviour are included. Once DRX was promoted, obvious deviation between the experimental and calculated stress-strain curves appeared, which denoted the critical strain for DRX. The modeling in this work could be used not only to accurately calculate the critical strain for DRX but also to analyze the dynamic softening behaviours during hot deformation. To validate the calculated results, the stress-strain database was analyzed in the H beam sample deformed at 1000C with a strain rate of 0.1/s, and a critical strain of 0.22 was obtained by this novel method as an example. The calculated result is in good agreement with the experimental data obtained by micrographical observations.


2021 ◽  
Vol 22 (21) ◽  
pp. 11732
Author(s):  
Gianfranco Cordella ◽  
Antonio Tripodo ◽  
Francesco Puosi ◽  
Dario Pisignano ◽  
Dino Leporini

Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of the deformed system, which might have critical importance for applications. The instability, which develops in the elastoplastic regime above a finite critical strain, leads to the growth of unidimensional wrinkling up to strains as large as 0.5. We highlight both the dominant wavelength and the amplitude of the wavy structure. The wavelength is found to scale geometrically with the film length, λ∝L, up to a compressive strain of ε≃0.4 at least, depending on the film length. The onset and growth of the wrinkling under small compression are quite well described by an extended version of the familiar square-root law in the strain ε observed in macroscopic systems. Under large compression (ε≳0.25), we find that the wrinkling amplitude increases while leaving the cross section nearly constant, offering a novel interpretation of the instability with a large amplitude. The contour length of the film topography is not constant under compression, which is in disagreement with the simple accordion model. These findings might be highly relevant for the design of novel and effective wrinkling and buckling patterns and architectures in flexible platforms for electronics and photonics.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110461
Author(s):  
Hai-bo Lin

The dynamic recrystallization behaviors of 6082 aluminum alloy in the temperature range of 623–773 K and strain rate range of 0.01–5 s−1 were studied by electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM). According to the experimental results, dynamic recrystallization occurs during hot deformation of 6082 aluminum alloy, although the true stress-strain curve has no obvious single peak characteristic, and the degree of dynamic recrystallization is closely related to the Z parameter. Hot compression with lnZ = 24.9014 (723 K, 0.1 s−1) gives rise to the highest recrystallization fraction of 38.6%. The initial critical strain of dynamic recrystallization was determined by the work hardening rate. The quantitative relationship between the critical strain and Z parameters was established: [Formula: see text]. Based on the EBSD analysis and measurement results, dynamic recrystallization kinetics models of 6082 aluminum alloy during hot deformation were deduced. Microstructure analysis showed that the subgrain structure formed in the original grain is coarsened by grain boundary migration, and the orientation difference increases continuously until a large-angle grain boundary forms, resulting in dynamic recrystallization of grains. The likely mechanism is continuous dynamic recrystallization.


Author(s):  
Peyman Barghabany ◽  
Jun Zhang ◽  
Louay N. Mohammad ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Growing use of recycled asphalt materials in asphalt pavement means the current volumetric-based Superpave mixture design may not address durability concerns arising from replacement of a proportion of virgin binder with recycled ones. To address this limitation, performance-based testing is introduced to supplement conventional volumetric mixture design in assessing cracking performance of asphalt mixtures. Louisiana Department of Transportation and Development’s Specifications for Roads and Bridges specify a criterion for the critical strain energy release rate, Jc, obtained from semi-circular bend (SCB) test as a complement of current practice to evaluate cracking resistance of asphalt mixtures. Quality control/assurance practices, however, require SCB samples to be long-term aged for five days at 85°C, which is a time-consuming process. Therefore, it is beneficial to be able to estimate SCB Jc for long-term aged asphalt mixtures based on SCB Jc measured from plant-produced asphalt mixtures. Asphalt mixture aging is complex, and various variables are involved in the aging process, including volumetric properties of asphalt mixture and chemical/rheological characteristics of asphalt binder. With the capability of artificial neural network (ANN) to address complex relationships between input and output variables, this study aims to predict the fracture parameter, SCB Jc, of asphalt mixtures using ANN. A total of 34 asphalt mixtures were selected for this study. SCB fracture test and asphalt binder tests for chemical and rheological characterization were conducted. Stepwise regression analysis was used to determine the significant parameters in the correlation with SCB Jc. With determined significant parameters, ANN using the gradient descent backpropagation approach was then applied to develop and validate the predictive model. It was shown that the developed ANN model was able to predict the fracture parameter, SCB Jc, of asphalt mixtures more accurately than linear and non-linear regression models.


Author(s):  
S. Sakurai ◽  
I. Kawashima ◽  
T. Otani

2021 ◽  
Author(s):  
Omar Rodríguez

To tackle the current drawbacks with metallic implants used in direct skeletal attachment, novel bioactive glasses are considered as implant coatings in order to reduce bacterial infections and promote bone cell growth. Silica-based and borate-based glasses, with increasing amounts of titanium dioxide at the expense of either silica (for the silica-based glasses) or borate (for the borate-based glasses), respectively, were synthesized and characterized to determine the parameters that define a glass capable of inhibiting bacterial growth, stimulating cell proliferation and offering mechanical stability when enameled into a surgical alloy. The effect of substituting the glass backbone with titanium dioxide, in both glass series, is also investigated with respect to its effect on both biocompatibility and mechanical properties of the resultant glass/implant constructs. Borate-based glasses exhibited greater processing windows compared to the silica-based glasses, making them more desirable for coating applications. They also exhibited superior performance in terms of their in vitro bioactivity and biocompatibility, over their silica-based counterparts, due to their higher solubility and greater ability to inhibit S. epidermidis and E. coli bacteria. Specifically, glass BRT0 (control borate-based glass, with no titanium incorporated) exhibited an inhibition zone against S. epidermidis of 17.5 mm and a mass loss of 40% after 30 days, with BRT3 (borate-based glass, with 15 mol% titanium incorporated) exhibiting an inhibition zone against S. epidermidis of 7.6 mm and a mass loss of 34% after 30 days. Furthermore, borate-based glasses with greater titanium dioxide contents exhibited superior mechanical properties (e.g. bulk hardness, and critical strain energy release rates), which could be attributed to their more closely matched coefficients of thermal expansion with the titanium alloy substrate, Ti6Al4V, to which they were adhered. The critical strain energy release rates in mode I for the silica-based coating/substrate system ranged from 6.2 J/m2 (for SRT0, control silica-based glass with no titanium) to 12.08 J/m2 (for SRT3), whereas for the borate-based systems they ranged from 10.86 J/m2 (for BRT0) to 18.5 J/m2 (for BRT3), with the increase for the borate-based glasses being attributed to the presence of compressive residual stresses in the coating after application.


Sign in / Sign up

Export Citation Format

Share Document