scholarly journals Shear behaviour of steel fibre reinforced self-consolidating concrete beams based on the modified compression field theory

2012 ◽  
Vol 94 (8) ◽  
pp. 2440-2449 ◽  
Author(s):  
Yining Ding ◽  
Fasheng Zhang ◽  
Fernando Torgal ◽  
Yulin Zhang
2021 ◽  
Author(s):  
Kokilan Sathiyamoorthy

Shear and flexural behaviour of lightweight self-consolidating concrete (LWSCC) beams made of slag aggregates were investigated. Shear reinforced LWSCC beams showed similar shear behaviour compared to their non-shear reinforced counterparts until the formation of diagonal cracks but higher ultimate shear resistance and ductility. Compared to normal weight self-consolidating concrete (SCC) ones, non-shear reinforced LWSCC beams showed lower post-cracking shear resistance. Shear strength of LWSCC/SCC beams increased with the decrease of shear span to depth ratio. LWSCC beams showed higher number of cracks and wider crack width at failure than their SCC counterparts. LWSCC beams developed higher number of cracks with wider crack width at failure compared with their SCC counterparts. American, Canadian and British Codes were conservative in predicting shear strength of shear/non-shear reinforced LWSCC beams. LWSCC beams (with slag aggregate) showed good shear resistance compared with those made of other types of aggregates besides satisfactory flexural performance.


2014 ◽  
Vol 5 (1) ◽  
pp. 9-19
Author(s):  
I. Kovács

Abstract The papers of the series deal with experimental characterisation of mechanical as well as structural properties of different steel fibre reinforced concretes that can be used for several structural applications. An extensive experimental programme (six years) has been developed to investigate the effect of steel fibre reinforcement on the mechanical performance and structural behaviour of concrete specimens. Specimens and test methods were selected to be able to detect realistic behaviour of the material, representing clear effect on the structural performance. Material compositions, test methods, type of test specimens will be detailed in the presented paper (Part I). Furthermore, compressive strength (Part II), stress-strain relationship (Part II), splitting strength (Part III) and toughness (Part IV) will also be discussed. In the light of the motivation to determine the structural performances of 1D concrete structural element affected by steel fibre reinforcement, bending and shear behaviour (Part V) as well as serviceability state (Part VI) of steel fibre reinforced concrete beams will be analysed. Since normal force — prestressing force — can affectively be used to improve the structural performances of RC element flexural tests were carried out on prestressed pretensioned steel fibre reinforced concrete beams (Part VII). Moreover, focusing on the in-plane state of stresses for 2D structures, behaviour of steel fibre reinforced concrete deep beams in shear and steel fibre reinforced concrete slabs (Part VIII) in bending will be explained. Finally, based on the wide range of the experimental and analytical studies on the presented field, a new material model for the 1D uniaxial behaviour (Part IX) and its possible extension to the 3D case (Part X) will be described hereafter. All papers will put emphasis on the short literature review of the last four decades.


Sign in / Sign up

Export Citation Format

Share Document