tangent stiffness
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 14)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Quan Gu ◽  
Jinghao Pan ◽  
Yongdou Liu

Consistent tangent stiffness plays a crucial role in delivering a quadratic rate of convergence when using Newton’s method in solving nonlinear equations of motion. In this paper, consistent tangent stiffness is derived for a three-dimensional (3D) wheel–rail interaction element (WRI element for short) originally developed by the authors and co-workers. The algorithm has been implemented in finite element (FE) software framework (OpenSees in this paper) and proven to be effective. Application examples of wheelset and light rail vehicle are provided to validate the consistent tangent stiffness. The quadratic convergence rate is verified. The speeds of calculation are compared between the use of consistent tangent stiffness and the tangent by perturbation method. The results demonstrate the improved computational efficiency of WRI element when consistent tangent stiffness is used.


2021 ◽  
Author(s):  
Patrick Diehl ◽  
Robert Lipton

We apply a nonlinear-nonlocal field theory for numerical calculation of quasistatic fracture. The model is given by a regularized nonlinear pairwise (RNP) potential in a peridynamic formulation. The potential function is given by an explicit formula with and explicit first and second derivatives. This fact allows us to write the entries of the tangent stiffness matrix explicitly thereby saving computational costs during the assembly of the tangent stiffness matrix. We validate our approach against classical continuum mechanics for the linear elastic material behavior. In addition, we compare our approach to a state-based peridynamic model that uses standard numerical derivations to assemble the tangent stiffness matrix. The numerical experiments show that for elastic material behavior our approach agrees with both classical continuum mechanics and the state-based model.The fracture model is applied to produce a fracture simulation for a ASTM E8 like tension test. We conclude with an example of crack growth in a pre-cracked square plate. For the pre-cracked plate, we investigated {\it soft loading} (load in force) and {\it hard loading} (load in displacement). Our approach is novel in that only bond softening is used as opposed to bond breaking. For the fracture simulation we have shown that our approach works with and without initial damage for two common test problems.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 452
Author(s):  
Zeming Zhao ◽  
Kai Wei ◽  
Wenhao Ding ◽  
Fang Cheng ◽  
Ping Wang

The purpose of this research was to investigate and improve the accuracy of the existing slab-track mat (STM) specifications in the evaluation of the vibration reduction effect. The static nonlinearity and dynamic mechanical characteristics of three types of STMs were tested, and then a modified fractional derivative Poynting–Thomson (FDPT) model was used to characterize the preload and frequency dependence. A modified vehicle–floating slab track (FST) coupled dynamic model was established to analyze the actual insertion loss. The insertion loss error evaluated by the frequency-dependent tangent stiffness increased with the increase in STM nonlinearity, and the error obtained by the third preload tangent stiffness was usually greater than that of the second preload. Compared with the secant stiffness, the second preload frequency-dependent tangent stiffness was more suitable for evaluating STMs with high-static–low-dynamics (HSLD) stiffness. In order to reflect the frequency dependence effect and facilitate engineering applications, it is recommended that second preload tangent stiffness corresponding to the natural frequency of the FST be used for evaluation. Furthermore, the insertion loss of the STMs with monotonically increased stiffness decreased as the axle load increased, and the opposite was true for the STMs with monotonically decreased stiffness. The vibration isolation efficiency of the STMs with HSLD stiffness was both stable and better than that of the STMs with monotonic stiffness.


2020 ◽  
Vol 10 (18) ◽  
pp. 6263
Author(s):  
Pietro Croce

Cable-stayed structures are widely employed in several fields of civil, industrial, electrical and ocean engineering. Typical applications are cable-stayed building roofs, bridges, guyed masts, overhead electrical lines, and floating device anchorages. Since the cable behavior is often highly nonlinear, suitable equivalent mechanical cable models are often adopted in analyzing this kind of structures. Usually, like in the classical Dischinger’s approach, stays are treated as straight rods offering an equivalent axial tangent stiffness, so that each of them can be substituted with an appropriate equivalent nonlinear spring or truss element. Formulae expressing equivalent stiffness provided by classical methods are satisfactory only when the cable is highly stressed, and therefore its sag is small with respect to its chord; on the contrary, when the cable is slack, they give often contradictory or meaningless results. Aiming to remove that limitation, a more refined approach based on the application of the virtual work principle is discussed. Important products of that original rational criterion are accurate and closed form innovative expressions of the tangent stiffness of the cable, whose field of application is independent on the sag to chord ratio of the cable, as well as on the magnitude of the normal stresses. Referring to some relevant case studies, the results obtained applying these new formulae are critically discussed for cables made of different materials, also in comparison with the approximate expressions provided by simplified methods.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1008
Author(s):  
Jian Feng ◽  
Changtong Li ◽  
Yixiang Xu ◽  
Qian Zhang ◽  
Fang Wang ◽  
...  

In recent years, the topic of progressive structural collapse has received more attention around the world, and the study of element importance is the key to studying progressive collapse resistance. However, there are many elements in truss structures, making it difficult to predict their importance. The global stiffness matrix contains the specific information of the structure and singularity of the matrix can reflect the safety status of the structure, so it is useful to evaluate the key elements based on the global stiffness matrix for truss structures. In this paper, according to the tangent stiffness-based method for the element importance, the square pyramid grid was chosen as an example, and the distribution rules of key elements under different support conditions, stiffness distributions, and geometric parameters were studied. Then, three common symmetric grid forms, i.e., diagonal square pyramid grids, biorthogonal lattice grids, and biorthogonal diagonal lattice grids, were selected to investigate their importance indices of elements. The principle in this work can be utilized in progressive collapse analysis and safety assessment for spatial truss structures.


2020 ◽  
Vol 62 (5) ◽  
pp. 2357-2374
Author(s):  
Peter D. Dunning

Abstract This paper investigates the application of the co-rotational method to solve geometrically nonlinear topology optimization problems. The main benefit of this approach is that the tangent stiffness matrix is naturally positive definite, which avoids some numerical issues encountered when using other approaches. Three different methods for constructing the tangent stiffness matrix are investigated: a simplified method, where the linear elastic stiffness matrix is simply rotated; the consistent method, where the tangent stiffness is derived by differentiating residual forces by displacements; and a symmetrized method, where the consistent tangent stiffness is approximated by a symmetric matrix. The co-rotational method is implemented for 2D plane quadrilateral elements and 3-node shell elements. Matlab code is given in the appendix to modify an existing, freely available, density-based topology optimization code so it can solve 2D problems with geometric nonlinear analysis using the co-rotational method. The approach is used to solve four benchmark problems from the literature, including optimizing for stiffness, compliant mechanism design, and a plate problem. The solutions are comparable with those obtained with other methods, demonstrating the potential of the co-rotational method as an alternative approach for geometrically nonlinear topology optimization. However, there are differences between the methods in terms of implementation effort, computational cost, final design, and objective value. In summary, schemes involving the symmetrized tangent stiffness did not outperform the other schemes. For problems where the optimal design has relatively small displacements, then the simplified method is suitable. Otherwise, it is recommended to use the consistent method, as it is the most accurate.


Sign in / Sign up

Export Citation Format

Share Document