A displacement-based finite element formulation for the analysis of laminated composite plates

2013 ◽  
Vol 95 ◽  
pp. 518-527 ◽  
Author(s):  
G. Castellazzi ◽  
P. Krysl ◽  
I. Bartoli
2011 ◽  
Vol 311-313 ◽  
pp. 2235-2238
Author(s):  
Zainudin A Rasid ◽  
Rizal Zahari ◽  
Ayob Amran ◽  
Dayang Laila Majid ◽  
Ahmad Shakrine M. Rafie

Shape memory alloy was firstly used commercially as a hydraulic coupling in the Grumman F14A in 1971. It is today used among others to improve structural behaviours such as buckling of composite plates in the aerospace vehicles. In this paper, finite element model and its source code for thermal post-buckling of shape memory alloy laminated composite plates is presented. The shape memory alloy wires induced stress that improved the strain energy, stiffness and thus the buckling behaviour of the composite plates. The finite element formulation catered the combined properties of the composite and shape memory alloys, the addition of the recovery stress and the temperature dependent properties of the shape memory alloys and the composite matrix. This study showed that by embedding shape memory alloy within layers of composite plates, post-buckling behaviours of composite plates can be improved substantially.


2011 ◽  
Vol 471-472 ◽  
pp. 536-541 ◽  
Author(s):  
Zainudin A. Rasid ◽  
Ayob Amran ◽  
Rizal Zahari ◽  
Faizal Mustapha ◽  
D.L. Majid ◽  
...  

Thermal buckling and thermal post-buckling behaviours of laminated composite plates are improved by embedding shape memory alloy wires within laminates of composite plates. The procedure is to use the recovery stress that is induced when the reverse transformation of the shape memory alloy from martensite to austenite phases is constrained. For aerospace applications where the source of the shape memory alloy heating is the high temperature environment itself, a study is conducted to see the effect of shape memory alloy in improving the thermal buckling and post-buckling of composite plates. Due to the temperature dependent nature of the composite matrix and the shape memory alloy, the finite element formulation developed here is in the incremental form. Solving this non-linear model using the developed in-house source code, critical loads are determined and the post-buckling paths of the shape memory alloy composite plates are traced. This study shows that by embedding the shape memory alloy within composite plates, the thermal buckling and post-buckling behaviours of composite plates can be improved substantially.


2017 ◽  
Vol 267 ◽  
pp. 35-39 ◽  
Author(s):  
Emrah Madenci ◽  
Atilla Özütok

The main objective of the present study is to give a systematic way for the derivation of laminated composite plates by using the mixed type finite element formulation with a functional. The first order shear deformation plate theory is used. Differential field equations of composite plates are derived from virtual displacement principle. These equations were written in operator form then by using the Gâteaux differential method, a new functional which including the dynamic and geometric boundary conditions is obtained after provide potential conditions. Applying mixed-type finite element based on this new functional, a plate element namely FOPLT32 is derived which have 8 degrees of freedoms on per node, total 32 freedoms. The reliability of the derived FOPLT32 plate elements for static analysis is verified, since the results obtained have been shown to agree well with the existing ones.


1993 ◽  
Vol 115 (1) ◽  
pp. 41-46 ◽  
Author(s):  
T. Y. Kam ◽  
R. R. Chang

A shear deformable finite element is developed for the analysis of thick laminated composite plates. The finite element formulation is based on Mindlin’s plate theory in which shear correction factors are derived from the exact expressions for orthotropic materials. The element is used to solve a variety of problems on deflection, stress distribution, natural frequency and buckling of laminated composite plates. The effects of material properties, plate aspect ratio, length-to-thickness ratio, number of layers and lamination angle on the mechanical behaviors of laminated composite plates are investigated. Optimal lamination arrangements of layers for laminated composite plates of particular applications are determined.


Sign in / Sign up

Export Citation Format

Share Document