Bending analysis of moderately thick functionally graded conical panels with various boundary conditions using GDQ method

2013 ◽  
Vol 103 ◽  
pp. 68-74 ◽  
Author(s):  
J. Abediokhchi ◽  
M. Shakouri ◽  
M.A. Kouchakzadeh

Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.





2016 ◽  
Vol 2016 ◽  
pp. 1-23 ◽  
Author(s):  
Peng Liu ◽  
Kun Lin ◽  
Hongjun Liu ◽  
Rong Qin

A new model for the free transverse vibration of axially functionally graded (FG) tapered Euler-Bernoulli beams is developed through the spline finite point method (SFPM) by investigating the effects of the variation of cross-sectional and material properties along the longitudinal directions. In the proposed method, the beam is discretized with a set of uniformly scattered spline nodes along the beam axis instead of meshes, and the displacement field is approximated by the particularly constructed cubic B-spline interpolation functions with good adaptability for various boundary conditions. Unlike traditional discretization and modeling methods, the global structural stiffness and mass matrices for beams of the proposed model are directly generated after spline discretization without needing element meshes, generation, and assembling. The proposed method shows the distinguished features of high modeling efficiency, low computational cost, and convenience for boundary condition treatment. The performance of the proposed method is verified through numerical examples available in the published literature. All results demonstrate that the proposed method can analyze the free vibration of axially FG tapered Euler-Bernoulli beams with various boundary conditions. Moreover, high accuracy and efficiency can be achieved.





Author(s):  
MOHAMMAD TALHA ◽  
B. N. SINGH

Nonlinear mechanical bending of functionally graded material (FGM) plates under transverse loads with various boundary conditions are presented. The material properties of the FGM plates are graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The theoretical nonlinear finite element formulations are based on the higher-order shear deformation theory, with a special modification in the transverse displacement in order to estimate the parabolic distribution of transverse shear strains through the plate thickness. The Green–Lagrange nonlinear strain–displacement relation with all higher-order nonlinear strain terms is included to account for the large deflection response of the plate. The fundamental equations for FGM plates with traction-free boundary conditions on the top and bottom faces of the plate are accomplished using variational approach. Results have been achieved using a C0 continuous isoparametric Lagrangian finite element with 13 degrees of freedom per node. Convergence and comparison studies have been performed to ascertain the effectiveness of the present model. Numerical results are highlighted for different thickness ratios, aspect ratios, and role played by the constituent volume fraction index with different boundary conditions.



Sign in / Sign up

Export Citation Format

Share Document