Eigenvalue buckling analysis of cracked functionally graded cylindrical shells in the framework of the extended finite element method

2017 ◽  
Vol 159 ◽  
pp. 548-566 ◽  
Author(s):  
Amir Nasirmanesh ◽  
Soheil Mohammadi

2017 ◽  
Vol 20 (K3) ◽  
pp. 119-125
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Functionally graded material is of great importance in many engineering problems. Here the effect of multiple random inclusions in functionally graded material (FGM) is investigated in this paper. Since the geometry of entire model becomes complicated when many inclusions with different sizes appearing in the body, a methodology to model those inclusions without meshing the internal boundaries is proposed. The numerical method couples the level set method to the extended finite-element method (X-FEM). In the X-FEM, the finite-element approximation is enriched by additional functions through the notion of partition of unity. The level set method is used for representing the location of random inclusions. Numerical examples are presented to demonstrate the accuracy and potential of this technique. The obtained results are compared with available refered results and COMSOL, the finite element method software.



2017 ◽  
Vol 20 (K2) ◽  
pp. 141-147
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Analysis of mechanical behavior of a structure containing defects such as holes and inclusions is essential in many engineering applications. In many structures, the discontinuities may have a significant influence on the reduction of the structural stiffness. In this work, we consider the effect of multiple random holes and inclusions in functionally graded material (FGM) plate and apply the extended finite element method with enrichment functions to simulate the mechanical behavior of those discontinuous interfaces. The inclusions also have FGM properties. Numerical examples are considered and their obtained results are compared with the COMSOL, the finite element method software.







Author(s):  
Elena Benvenuti ◽  
Nicola Orlando

AbstractWe propose a formulation for tracking general crack paths in elastodamaging materials without mesh adaptivity and broadening of the damage band. The idea is to treat in a unified way both the damaging process and the development of displacement discontinuities by means of the regularized finite element method. With respect to previous authors’ contributions, a novel damage evolution law and an original crack tracking framework are proposed. We face the issue of mesh objectivity through several two-dimensional tests, obtaining smooth crack paths and reliable structural results.



Sign in / Sign up

Export Citation Format

Share Document