Multiobjective optimization of ceramic-metal functionally graded plates using a higher order model

2018 ◽  
Vol 183 ◽  
pp. 146-160 ◽  
Author(s):  
Victor M. Franco Correia ◽  
J.F. Aguilar Madeira ◽  
Aurélio L. Araújo ◽  
Cristóvão M. Mota Soares
2018 ◽  
Vol 90 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Kulmani Mehar ◽  
Subrata Kumar Panda

Purpose The purpose of this paper is to develop a general mathematical model for the evaluation of the theoretical flexural responses of the functionally graded carbon nanotube-reinforced composite doubly curved shell panel using higher-order shear deformation theory with thermal load. It is well-known that functionally graded materials are a multidimensional problem, and the present numerical model is also capable of solving the flexural behaviour of different shell panel made up of carbon nanotube-reinforced composite with adequate accuracy in the absence of experimentation. Design/methodology/approach In this current paper, the responses of the single-walled carbon nanotube-reinforced composite panel is computed numerically using the proposed generalised higher-order mathematical model through a homemade computer code developed in MATLAB. The desired flexural responses are computed numerically using the variational method. Findings The validity and the convergence behaviour of the present higher-order model indicate the necessity for the analysis of multidimensional structure under the combined loading condition. The effect of various design parameters on the flexural behaviour of functionally graded carbon nanotube doubly curved shell panel are examined to highlight the applicability of the presently proposed higher-order model under thermal environment. Originality/value In this paper, for the first time, the static behaviour of functionally graded carbon nanotube-reinforced composite doubly curved shell panel is analysed using higher-order shear deformation theory. The properties of carbon nanotube and the matrix material are considered to be temperature dependent. The present model is so general that it is capable of solving various geometries from single curve to doubly curved panel, including the flat panel.


2015 ◽  
Vol 53 (6) ◽  
pp. 1143-1165 ◽  
Author(s):  
Sihame Ait Yahia ◽  
Hassen Ait Atmane ◽  
Mohammed Sid Ahmed Houari ◽  
Abdelouahed Tounsi

2014 ◽  
Vol 11 (06) ◽  
pp. 1350098 ◽  
Author(s):  
ABDERRAHMANE SAID ◽  
MOHAMMED AMEUR ◽  
ABDELMOUMEN ANIS BOUSAHLA ◽  
ABDELOUAHED TOUNSI

An improved simple hyperbolic shear deformation theory involving only four unknown functions, as against five functions in case of first or other higher-order shear deformation theories, is introduced for the analysis of functionally graded plates resting on a Winkler–Pasternak elastic foundation. The governing equations are derived by employing the principle of virtual work and the physical neutral surface concept. The accuracy of the present analysis is demonstrated by comparing some of the present results with those of the classical, the first-order and the other higher-order theories.


Sign in / Sign up

Export Citation Format

Share Document